What is the derivative of $ i? $
Answer
Verified
405.6k+ views
Hint: As we know that $ i $ is an imaginary part of the complex number. It is known as iota. We know that a complex number is a number which can be expressed in the $ a + bi $ form, where $ a $ and $ b $ are real numbers and $ i $ is the imaginary number. It means it consists of both real and imaginary parts. We can find the value of the imaginary unit number which is a negative number inside the square root. It is given by $ \sqrt { - 1} $
Complete step-by-step answer:
As per the given we have to find the derivative of iota i.e. $ i $ .
From the above we can see that the value of iota is i.e. $ i = \sqrt { - 1} $ . We can see that it is a constant.
We know that the derivative of any constant number is always zero. Here the value is also constant though imaginary.
Therefore, $ \dfrac{d}{{dx}}C = 0 $
$\Rightarrow \dfrac{d}{{dx}}i = 0 $
Hence we can say that the derivative of $ i $ is $ 0 $ .
So, the correct answer is “0”.
Note: We should know the constant rule which is , Let $ C $ be the constant. If $ f(x) = C, $ then $ f'(x) = 0 $ or we can write that $ \dfrac{d}{{dx}}C = 0 $ . The constant rule says that the derivative of any constant function is always $ 0 $ . We should be careful while calculating the values and in the square of the imaginary part we should note that the square of any negative number is always positive, the negative sign changes.
Complete step-by-step answer:
As per the given we have to find the derivative of iota i.e. $ i $ .
From the above we can see that the value of iota is i.e. $ i = \sqrt { - 1} $ . We can see that it is a constant.
We know that the derivative of any constant number is always zero. Here the value is also constant though imaginary.
Therefore, $ \dfrac{d}{{dx}}C = 0 $
$\Rightarrow \dfrac{d}{{dx}}i = 0 $
Hence we can say that the derivative of $ i $ is $ 0 $ .
So, the correct answer is “0”.
Note: We should know the constant rule which is , Let $ C $ be the constant. If $ f(x) = C, $ then $ f'(x) = 0 $ or we can write that $ \dfrac{d}{{dx}}C = 0 $ . The constant rule says that the derivative of any constant function is always $ 0 $ . We should be careful while calculating the values and in the square of the imaginary part we should note that the square of any negative number is always positive, the negative sign changes.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
How do you convert from joules to electron volts class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
On what factors does the internal resistance of a cell class 12 physics CBSE
A 24 volt battery of internal resistance 4 ohm is connected class 12 physics CBSE