
What is the value of $\sin {105^0} + \cos {105^0}$?
$
{\text{A}}{\text{. }}\sin {50^0} \\
{\text{B}}{\text{. cos}}{50^0} \\
{\text{C}}{\text{. }}\dfrac{1}{{\sqrt 2 }} \\
{\text{D}}{\text{. 0}} \\
$
Answer
609.6k+ views
Hint- Here, we will be splitting the angle ${105^0}$ into the sum of ${60^0}$ and ${45^0}$ because from the trigonometric table we know the values of the trigonometric functions corresponding to ${60^0}$ and ${45^0}$.
“Complete step-by-step answer:”
As we know that $\sin \left( {A + B} \right) = \left( {\sin A} \right)\left( {\cos B} \right) + \left( {\cos A} \right)\left( {\sin B} \right)$
\[
\sin {105^0} = \sin \left( {{{60}^0} + {{45}^0}} \right) \\
\Rightarrow \sin {105^0} = \left( {\sin {{60}^0}} \right)\left( {\cos {{45}^0}} \right) + \left( {\cos {{60}^0}} \right)\left( {\sin {{45}^0}} \right){\text{ }} \to {\text{(1)}} \\
\]
According to trigonometric table, $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$, $\cos {60^0} = \dfrac{1}{2}$ and $sin{45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
\[
\Rightarrow \sin {105^0} = \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }} \\
\Rightarrow \sin {105^0} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}{\text{ }} \to {\text{(2)}} \\
\]
Also we know that $\cos \left( {A + B} \right) = \left( {\cos A} \right)\left( {\cos B} \right) - \left( {\sin A} \right)\left( {\sin B} \right)$
$
\cos {105^0} = \cos \left( {{{60}^0} + {{45}^0}} \right) \\
\Rightarrow \cos {105^0} = \left( {\cos {{60}^0}} \right)\left( {\cos {{45}^0}} \right) - \left( {\sin {{60}^0}} \right)\left( {\sin {{45}^0}} \right){\text{ }} \to {\text{(3)}} \\
$
According to trigonometric table, $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$, $\cos {60^0} = \dfrac{1}{2}$ and $sin{45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
Putting the above values in equation (3), we get
$
\Rightarrow \cos {105^0} = \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) - \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) = \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} \\
\Rightarrow \cos {105^0} = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}{\text{ }} \to {\text{(4)}} \\
$
The value of expression $\sin {105^0} + \cos {105^0}$ can be obtained by using equations (2) and (4), we get
$\sin {105^0} + \cos {105^0} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} = \dfrac{{\sqrt 3 + 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }} = \dfrac{2}{{2\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}$
Hence, option C is correct.
Note- In this particular problem, we doesn’t know the value of trigonometric functions corresponding to ${105^0}$ directly so in order to obtain that we split this angle and then use the formulas $\sin \left( {A + B} \right) = \left( {\sin A} \right)\left( {\cos B} \right) + \left( {\cos A} \right)\left( {\sin B} \right)$ and $\cos \left( {A + B} \right) = \left( {\cos A} \right)\left( {\cos B} \right) - \left( {\sin A} \right)\left( {\sin B} \right)$ to obtain the values of $\sin {105^0}$ and $\cos {105^0}$.
“Complete step-by-step answer:”
As we know that $\sin \left( {A + B} \right) = \left( {\sin A} \right)\left( {\cos B} \right) + \left( {\cos A} \right)\left( {\sin B} \right)$
\[
\sin {105^0} = \sin \left( {{{60}^0} + {{45}^0}} \right) \\
\Rightarrow \sin {105^0} = \left( {\sin {{60}^0}} \right)\left( {\cos {{45}^0}} \right) + \left( {\cos {{60}^0}} \right)\left( {\sin {{45}^0}} \right){\text{ }} \to {\text{(1)}} \\
\]
According to trigonometric table, $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$, $\cos {60^0} = \dfrac{1}{2}$ and $sin{45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
\[
\Rightarrow \sin {105^0} = \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) + \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) = \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} + \dfrac{1}{{2\sqrt 2 }} \\
\Rightarrow \sin {105^0} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }}{\text{ }} \to {\text{(2)}} \\
\]
Also we know that $\cos \left( {A + B} \right) = \left( {\cos A} \right)\left( {\cos B} \right) - \left( {\sin A} \right)\left( {\sin B} \right)$
$
\cos {105^0} = \cos \left( {{{60}^0} + {{45}^0}} \right) \\
\Rightarrow \cos {105^0} = \left( {\cos {{60}^0}} \right)\left( {\cos {{45}^0}} \right) - \left( {\sin {{60}^0}} \right)\left( {\sin {{45}^0}} \right){\text{ }} \to {\text{(3)}} \\
$
According to trigonometric table, $\sin {60^0} = \dfrac{{\sqrt 3 }}{2}$, $\cos {60^0} = \dfrac{1}{2}$ and $sin{45^0} = \cos {45^0} = \dfrac{1}{{\sqrt 2 }}$
Putting the above values in equation (3), we get
$
\Rightarrow \cos {105^0} = \left( {\dfrac{1}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) - \left( {\dfrac{{\sqrt 3 }}{2}} \right)\left( {\dfrac{1}{{\sqrt 2 }}} \right) = \dfrac{1}{{2\sqrt 2 }} - \dfrac{{\sqrt 3 }}{{2\sqrt 2 }} \\
\Rightarrow \cos {105^0} = \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }}{\text{ }} \to {\text{(4)}} \\
$
The value of expression $\sin {105^0} + \cos {105^0}$ can be obtained by using equations (2) and (4), we get
$\sin {105^0} + \cos {105^0} = \dfrac{{\sqrt 3 + 1}}{{2\sqrt 2 }} + \dfrac{{1 - \sqrt 3 }}{{2\sqrt 2 }} = \dfrac{{\sqrt 3 + 1 + 1 - \sqrt 3 }}{{2\sqrt 2 }} = \dfrac{2}{{2\sqrt 2 }} = \dfrac{1}{{\sqrt 2 }}$
Hence, option C is correct.
Note- In this particular problem, we doesn’t know the value of trigonometric functions corresponding to ${105^0}$ directly so in order to obtain that we split this angle and then use the formulas $\sin \left( {A + B} \right) = \left( {\sin A} \right)\left( {\cos B} \right) + \left( {\cos A} \right)\left( {\sin B} \right)$ and $\cos \left( {A + B} \right) = \left( {\cos A} \right)\left( {\cos B} \right) - \left( {\sin A} \right)\left( {\sin B} \right)$ to obtain the values of $\sin {105^0}$ and $\cos {105^0}$.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Two Planoconcave lenses 1 and 2 of glass of refractive class 12 physics CBSE

The compound 2 methyl 2 butene on reaction with NaIO4 class 12 chemistry CBSE

Bacterial cell wall is made up of A Cellulose B Hemicellulose class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

The pH of the pancreatic juice is A 64 B 86 C 120 D class 12 biology CBSE

Give 10 examples of unisexual and bisexual flowers

