
Two trolleys 1 and 2 are moving with acceleration ${a_1}$ and ${a_2}$ respectively in the same direction. A block of mass “ $m$ “ on trolley $1$ is in equilibrium from the frame of observer stationary w.r.t trolley $2$. The magnitude of friction force on the block due to the trolley is (assume that no horizontal force other than frictional force is acting on the block).
Answer
233.1k+ views
Hint: By the given data, compare the acceleration of the block and the observer and the acceleration of the block and the second trolley. Use the formula of the force given below, substitute the known values, to find the value of the frictional force.
Formula used:
Complete step by step solution:
Note: The frictional force is the force that acts between the two surfaces that keeps the object to remain in place without movement. It has many kinds of use in daily life. We are able to stand only due to friction between the ground and toes.
Formula used:
By the Newton’s second law of motion,
$F = ma$
Where $F$ is the force acting on the block, $m$ is the mass of the block and $a$ is the acceleration of the block.
Complete step by step solution:
It is given that the acceleration of the trolley one is ${a_1}$.The acceleration of the trolley two is ${a_2}$.The mass of the block on the trolley one is $m$.The frame of the observer is in equilibrium with the block.Let the acceleration of block of mass with respect to
the observer on trolley 2 be denoted as ${a_{bo}}$.
This shows that the acceleration of the block of mass and the observer are the same.
${a_{bo}} = 0$
${a_b} - {a_o} =0 $
where ${a_b}$ denotes the acceleration of the block with respect to ground and ${a_o}$ denotes the acceleration of the observer with respect to ground.
Since the observer stands on the trolley two, the acceleration of the observer and the trolley two are the same.
$\Rightarrow {a_b} = {a_2}$--(1)
Let us assume that only frictional force acts on the block. Using the formula of motion,
$\Rightarrow F = ma$
$\Rightarrow F = m{a_b}$
Substitute (1) in the above step, we get
$\Rightarrow F = m{a_2}$
Hence the frictional force on the block is $m{a_2}$.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

