
Two springs with spring constants \[{K_1} = 1500\,N/m\] and \[{K_1} = 3000\,N/m\] are stretched by the same force. The ratio of potential energy stored in spring will be
A. 2:1
B. 1:2
C. 4:1
D. 1:4
Answer
232.8k+ views
Hint:When a spring is stretched or compressed it undergoes some displacement then comes back to its equilibrium after some time, therefore the spring exerts an equal and opposite force on a body that compresses or stretches the spring. This energy stored in the spring is called potential energy of spring and is equal to the product of force with displacement.
Formula used :
\[F = kx\,\,\]and \[U = \dfrac{1}{2}k{x^2}\]
Here, F= spring force K = Spring constant, x = Elongation in spring and U = Spring potential energy.
Complete step by step solution:
Two springs of constant \[{K_1} = 1500\,N/m\] and \[{K_1} = 3000\,N/m\] are given here and we have to find the ratio of potential energy for the spring when they are stretched by same force. Form spring force, \[F = kx\,\,\] we have elongation in spring as,
\[x = \dfrac{F}{k}\,\,\]
As the force on both the springs is the same, let the elongation be \[{x_1}\] and \[{x_2}\].
Then, \[{x_1} = \dfrac{F}{{{K_1}}}\] and \[{x_2} = \dfrac{F}{{{K_2}}}\,..........(1)\].
Potential energy of spring is defined by the amount of energy stored in it, which the spring applies to come to equilibrium when it is either stretched or compressed. Potential energy U for spring constant K and elongation in spring x is given by,
\[U = \dfrac{1}{2}k{x^2}\]
Using above equation potential energy \[{U_1}\] and \[{U_2}\] for springs of constant \[{K_1}\] and \[{K_2}\] and elongation \[{x_1}\] and \[{x_2}\] respectively will be,
\[{U_1} = \dfrac{1}{2}{K_1}x_1^2\,.......(2)\]
\[\Rightarrow {U_2} = \dfrac{1}{2}{K_2}x_2^2\,.......(3)\]
Dividing equation (2) by (3)
\[\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_1}x_1^2}}{2} \times \dfrac{2}{{{K_2}x_2^2}} \Rightarrow \dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_1}x_1^2}}{{{K_2}x_2^2}}\]
Substituting values of $x_1$ and $x_2$ from equation (1) in above equation we get,
$\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{K_1\,(F/K_1)^2}{K_2\,(F/K_2)^2} \\
\Rightarrow \dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_1}{F^2}K_2^2}}{{{K_2}K_1^2{F^2}}}\,.......(3)$
Further solving equation (3) we get,
\[\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_2}}}{{{K_1}}}\,........(4)\]
Substituting \[{K_1} = 1500\,N/m\] and \[{K_1} = 3000\,N/m\] in equation (4) we get,
\[\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{3000}}{{1500}} = \dfrac{2}{1}\]
Hence, the ratio of potential energy stored in the springs is 2:1.
Therefore, option A is the correct answer.
Note: When the spring is at equilibrium position the potential energy of the spring is minimum i. e. zero and when the spring is stretched to length x where kinetic energy is zero, at that point potential energy is equal to the total external work done on the system.
Formula used :
\[F = kx\,\,\]and \[U = \dfrac{1}{2}k{x^2}\]
Here, F= spring force K = Spring constant, x = Elongation in spring and U = Spring potential energy.
Complete step by step solution:
Two springs of constant \[{K_1} = 1500\,N/m\] and \[{K_1} = 3000\,N/m\] are given here and we have to find the ratio of potential energy for the spring when they are stretched by same force. Form spring force, \[F = kx\,\,\] we have elongation in spring as,
\[x = \dfrac{F}{k}\,\,\]
As the force on both the springs is the same, let the elongation be \[{x_1}\] and \[{x_2}\].
Then, \[{x_1} = \dfrac{F}{{{K_1}}}\] and \[{x_2} = \dfrac{F}{{{K_2}}}\,..........(1)\].
Potential energy of spring is defined by the amount of energy stored in it, which the spring applies to come to equilibrium when it is either stretched or compressed. Potential energy U for spring constant K and elongation in spring x is given by,
\[U = \dfrac{1}{2}k{x^2}\]
Using above equation potential energy \[{U_1}\] and \[{U_2}\] for springs of constant \[{K_1}\] and \[{K_2}\] and elongation \[{x_1}\] and \[{x_2}\] respectively will be,
\[{U_1} = \dfrac{1}{2}{K_1}x_1^2\,.......(2)\]
\[\Rightarrow {U_2} = \dfrac{1}{2}{K_2}x_2^2\,.......(3)\]
Dividing equation (2) by (3)
\[\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_1}x_1^2}}{2} \times \dfrac{2}{{{K_2}x_2^2}} \Rightarrow \dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_1}x_1^2}}{{{K_2}x_2^2}}\]
Substituting values of $x_1$ and $x_2$ from equation (1) in above equation we get,
$\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{K_1\,(F/K_1)^2}{K_2\,(F/K_2)^2} \\
\Rightarrow \dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_1}{F^2}K_2^2}}{{{K_2}K_1^2{F^2}}}\,.......(3)$
Further solving equation (3) we get,
\[\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_2}}}{{{K_1}}}\,........(4)\]
Substituting \[{K_1} = 1500\,N/m\] and \[{K_1} = 3000\,N/m\] in equation (4) we get,
\[\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{3000}}{{1500}} = \dfrac{2}{1}\]
Hence, the ratio of potential energy stored in the springs is 2:1.
Therefore, option A is the correct answer.
Note: When the spring is at equilibrium position the potential energy of the spring is minimum i. e. zero and when the spring is stretched to length x where kinetic energy is zero, at that point potential energy is equal to the total external work done on the system.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

