# Two equal parabolas have the same focus and their axes are at right angles. A normal to one is perpendicular to normal to the other. Prove that the locus of the point of intersection of these normals is another parabola

Answer

Verified

364.5k+ views

Hint: Equation of normal to parabola \[{{y}^{2}}=4ax\] is given as \[y=mx-2am-a{{m}^{3}}\], where \[m\] is the slope of the normal.

We will consider the equation of one of the parabolas as \[{{y}^{2}}=4ax\].

So , its focus is \[S\left( a,0 \right)\].

We know, the equation of normal to the parabola in slope form is given as

\[y=mx-2am-a{{m}^{3}}....\left( i \right)\] , where \[m\] is the slope of the normal.

Now , we have to find the locus of intersection of the normal.

We will consider this point to be \[N\left( h,k \right)\].

Now, since \[N\left( h,k \right)\] is the point of intersection of the normals , so , it should lie on equation \[\left( i \right)\], i.e. the point \[N\left( h,k \right)\] should satisfy equation \[\left( i \right)\].

So , we will substitute \[x=h\] and \[y=k\] in equation \[\left( i \right)\].

On substituting \[x=h\] and \[y=k\] in equation \[\left( i \right)\] , we get

\[k=mh-2am-a{{m}^{3}}\]

Or , \[a{{m}^{3}}+m\left( 2a-h \right)+k=0....\left( ii \right)\]

Clearly, we can see that equation \[\left( ii \right)\] is a cubic equation in \[m\] , which is of the form \[a{{m}^{3}}+b{{m}^{2}}+cm+d=0\]. So , it should represent three lines passing through \[\left( h,k \right)\].

Now, in the question , it is given that two perpendicular normals pass through \[N\left( h,k \right)\]. So , out of these three lines , two lines must be perpendicular.

Now , let \[{{m}_{1}},{{m}_{2}}\] and \[{{m}_{3}}\] be three roots of equation \[\left( ii \right)\]. The roots of the equation \[\left( ii \right)\] are corresponding to the slopes of the three lines.

Now, we are given two of these lines are perpendicular.

We know , when two lines are perpendicular , the product of their slopes is equal to \[-1\] .

So, \[{{m}_{1}}{{m}_{2}}=-1....\left( iii \right)\]

We know , for a cubic equation of the form \[a{{m}^{3}}+b{{m}^{2}}+cm+d=0\], the product of the roots is given as \[\dfrac{-d}{a}\].

So , from equation \[\left( ii \right)\] , we have

\[{{m}_{1}}{{m}_{2}}{{m}_{3}}=\dfrac{-k}{a}\]

Since , \[{{m}_{1}}{{m}_{2}}=-1\text{ }\left( \text{from equation }iii \right)\]

So, \[{{m}_{3}}=\dfrac{k}{a}\]

Now , \[{{m}_{3}}\] is a root of equation \[\left( ii \right)\]. So , it should satisfy the equation.

So , \[a{{\left( \dfrac{k}{a} \right)}^{3}}+\dfrac{k}{a}\left( 2a-h \right)+k=0\]

Or \[\dfrac{{{k}^{3}}}{{{a}^{2}}}+2k-\dfrac{kh}{a}+k=0\]

Or \[{{k}^{2}}+3{{a}^{2}}-ah=0\]

Or \[{{k}^{2}}=a\left( h-3a \right)\]

Now , the locus of \[N\left( h,k \right)\] is given by replacing \[\left( h,k \right)\] by \[\left( x,y \right)\]

So, the locus of \[N\left( h,k \right)\] is given as \[{{y}^{2}}=a\left( x-3a \right)\] which is the equation of a parabola.

Note: The product of slopes of perpendicular lines is equal to \[-1\] and not \[1\]. Students generally get confused and make this mistake.

We will consider the equation of one of the parabolas as \[{{y}^{2}}=4ax\].

So , its focus is \[S\left( a,0 \right)\].

We know, the equation of normal to the parabola in slope form is given as

\[y=mx-2am-a{{m}^{3}}....\left( i \right)\] , where \[m\] is the slope of the normal.

Now , we have to find the locus of intersection of the normal.

We will consider this point to be \[N\left( h,k \right)\].

Now, since \[N\left( h,k \right)\] is the point of intersection of the normals , so , it should lie on equation \[\left( i \right)\], i.e. the point \[N\left( h,k \right)\] should satisfy equation \[\left( i \right)\].

So , we will substitute \[x=h\] and \[y=k\] in equation \[\left( i \right)\].

On substituting \[x=h\] and \[y=k\] in equation \[\left( i \right)\] , we get

\[k=mh-2am-a{{m}^{3}}\]

Or , \[a{{m}^{3}}+m\left( 2a-h \right)+k=0....\left( ii \right)\]

Clearly, we can see that equation \[\left( ii \right)\] is a cubic equation in \[m\] , which is of the form \[a{{m}^{3}}+b{{m}^{2}}+cm+d=0\]. So , it should represent three lines passing through \[\left( h,k \right)\].

Now, in the question , it is given that two perpendicular normals pass through \[N\left( h,k \right)\]. So , out of these three lines , two lines must be perpendicular.

Now , let \[{{m}_{1}},{{m}_{2}}\] and \[{{m}_{3}}\] be three roots of equation \[\left( ii \right)\]. The roots of the equation \[\left( ii \right)\] are corresponding to the slopes of the three lines.

Now, we are given two of these lines are perpendicular.

We know , when two lines are perpendicular , the product of their slopes is equal to \[-1\] .

So, \[{{m}_{1}}{{m}_{2}}=-1....\left( iii \right)\]

We know , for a cubic equation of the form \[a{{m}^{3}}+b{{m}^{2}}+cm+d=0\], the product of the roots is given as \[\dfrac{-d}{a}\].

So , from equation \[\left( ii \right)\] , we have

\[{{m}_{1}}{{m}_{2}}{{m}_{3}}=\dfrac{-k}{a}\]

Since , \[{{m}_{1}}{{m}_{2}}=-1\text{ }\left( \text{from equation }iii \right)\]

So, \[{{m}_{3}}=\dfrac{k}{a}\]

Now , \[{{m}_{3}}\] is a root of equation \[\left( ii \right)\]. So , it should satisfy the equation.

So , \[a{{\left( \dfrac{k}{a} \right)}^{3}}+\dfrac{k}{a}\left( 2a-h \right)+k=0\]

Or \[\dfrac{{{k}^{3}}}{{{a}^{2}}}+2k-\dfrac{kh}{a}+k=0\]

Or \[{{k}^{2}}+3{{a}^{2}}-ah=0\]

Or \[{{k}^{2}}=a\left( h-3a \right)\]

Now , the locus of \[N\left( h,k \right)\] is given by replacing \[\left( h,k \right)\] by \[\left( x,y \right)\]

So, the locus of \[N\left( h,k \right)\] is given as \[{{y}^{2}}=a\left( x-3a \right)\] which is the equation of a parabola.

Note: The product of slopes of perpendicular lines is equal to \[-1\] and not \[1\]. Students generally get confused and make this mistake.

Last updated date: 27th Sep 2023

â€¢

Total views: 364.5k

â€¢

Views today: 3.64k

Recently Updated Pages

What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Is current density a scalar or a vector quantity class 12 physics JEE_Main

What is the value of 01+23+45+67++1617+1819+20 class 11 maths CBSE

How many millions make a billion class 6 maths CBSE

Draw a welllabelled diagram of a plant cell class 11 biology CBSE

Number of Prime between 1 to 100 is class 6 maths CBSE