
What will be the value of the determinant $\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
1&b&{ca} \\
1&c&{ab}
\end{array}} \right|$.
Answer
605.7k+ views
Hint- Here, after applying some row operations we will expand the determinant through first column as $\left| {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{21}}\left( {{a_{12}}{a_{33}} - {a_{13}}{a_{32}}} \right) + {a_{31}}\left( {{a_{12}}{a_{23}} - {a_{13}}{a_{22}}} \right)$.
Complete step-by-step answer:
Let us suppose D is the value of the given determinant.
i.e., ${\text{D = }}\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
1&b&{ca} \\
1&c&{ab}
\end{array}} \right|$
We can simplify the above given determinant by using some row operations.
Here, we will take the first row as the reference row and with the help of this row, we will make the second row and third row elements which are common with the first column elements as zero.
The row operations to be applied on the given determinant are ${{\text{R}}_2} \to {{\text{R}}_2} - {{\text{R}}_1}$ and ${{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_1}$
After applying above row operations, the determinant simplifies to
${\text{D}} = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
{\left( {1 - 1} \right)}&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\
{\left( {1 - 1} \right)}&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\
0&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\
0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}
\end{array}} \right|$
By taking $\left( {b - a} \right)$ and common from second and third rows respectively, we get
${\text{D}} = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\
0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}
\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&1&{ - c} \\
0&1&{ - b}
\end{array}} \right|$
Now, expanding the determinant through the first column, we get
\[ {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&1&{ - c} \\
0&1&{ - b}
\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right) \times \left[ {1\left( { - b - \left( { - c} \right)} \right)} \right] = \left( {b - a} \right)\left( {c - a} \right)\left( { - b + c} \right) \\
\Rightarrow {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right) \\
\]
Therefore, the value of the given determinant is \[\left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right)\].
Note- In this particular problem, we will simplify the given determinant in such a way that there will exist only one non-zero element in the first column and then we will expand the determinant through the first column in order to determine the value of the determinant.
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{21}}\left( {{a_{12}}{a_{33}} - {a_{13}}{a_{32}}} \right) + {a_{31}}\left( {{a_{12}}{a_{23}} - {a_{13}}{a_{22}}} \right)$.
Complete step-by-step answer:
Let us suppose D is the value of the given determinant.
i.e., ${\text{D = }}\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
1&b&{ca} \\
1&c&{ab}
\end{array}} \right|$
We can simplify the above given determinant by using some row operations.
Here, we will take the first row as the reference row and with the help of this row, we will make the second row and third row elements which are common with the first column elements as zero.
The row operations to be applied on the given determinant are ${{\text{R}}_2} \to {{\text{R}}_2} - {{\text{R}}_1}$ and ${{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_1}$
After applying above row operations, the determinant simplifies to
${\text{D}} = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
{\left( {1 - 1} \right)}&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\
{\left( {1 - 1} \right)}&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\
0&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\
0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}
\end{array}} \right|$
By taking $\left( {b - a} \right)$ and common from second and third rows respectively, we get
${\text{D}} = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\
0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}
\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&1&{ - c} \\
0&1&{ - b}
\end{array}} \right|$
Now, expanding the determinant through the first column, we get
\[ {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&1&{ - c} \\
0&1&{ - b}
\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right) \times \left[ {1\left( { - b - \left( { - c} \right)} \right)} \right] = \left( {b - a} \right)\left( {c - a} \right)\left( { - b + c} \right) \\
\Rightarrow {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right) \\
\]
Therefore, the value of the given determinant is \[\left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right)\].
Note- In this particular problem, we will simplify the given determinant in such a way that there will exist only one non-zero element in the first column and then we will expand the determinant through the first column in order to determine the value of the determinant.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

