# What will be the value of the determinant $\left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

1&b&{ca} \\

1&c&{ab}

\end{array}} \right|$.

Last updated date: 28th Mar 2023

•

Total views: 306.3k

•

Views today: 5.84k

Answer

Verified

306.3k+ views

Hint- Here, after applying some row operations we will expand the determinant through first column as $\left| {\begin{array}{*{20}{c}}

{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\

{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\

{{a_{31}}}&{{a_{32}}}&{{a_{33}}}

\end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{21}}\left( {{a_{12}}{a_{33}} - {a_{13}}{a_{32}}} \right) + {a_{31}}\left( {{a_{12}}{a_{23}} - {a_{13}}{a_{22}}} \right)$.

Complete step-by-step answer:

Let us suppose D is the value of the given determinant.

i.e., ${\text{D = }}\left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

1&b&{ca} \\

1&c&{ab}

\end{array}} \right|$

We can simplify the above given determinant by using some row operations.

Here, we will take the first row as the reference row and with the help of this row, we will make the second row and third row elements which are common with the first column elements as zero.

The row operations to be applied on the given determinant are ${{\text{R}}_2} \to {{\text{R}}_2} - {{\text{R}}_1}$ and ${{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_1}$

After applying above row operations, the determinant simplifies to

${\text{D}} = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

{\left( {1 - 1} \right)}&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\

{\left( {1 - 1} \right)}&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}

\end{array}} \right| = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\

0&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}

\end{array}} \right| = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\

0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}

\end{array}} \right|$

By taking $\left( {b - a} \right)$ and common from second and third rows respectively, we get

${\text{D}} = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\

0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}

\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&1&{ - c} \\

0&1&{ - b}

\end{array}} \right|$

Now, expanding the determinant through the first column, we get

\[ {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&1&{ - c} \\

0&1&{ - b}

\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right) \times \left[ {1\left( { - b - \left( { - c} \right)} \right)} \right] = \left( {b - a} \right)\left( {c - a} \right)\left( { - b + c} \right) \\

\Rightarrow {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right) \\

\]

Therefore, the value of the given determinant is \[\left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right)\].

Note- In this particular problem, we will simplify the given determinant in such a way that there will exist only one non-zero element in the first column and then we will expand the determinant through the first column in order to determine the value of the determinant.

{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\

{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\

{{a_{31}}}&{{a_{32}}}&{{a_{33}}}

\end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{21}}\left( {{a_{12}}{a_{33}} - {a_{13}}{a_{32}}} \right) + {a_{31}}\left( {{a_{12}}{a_{23}} - {a_{13}}{a_{22}}} \right)$.

Complete step-by-step answer:

Let us suppose D is the value of the given determinant.

i.e., ${\text{D = }}\left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

1&b&{ca} \\

1&c&{ab}

\end{array}} \right|$

We can simplify the above given determinant by using some row operations.

Here, we will take the first row as the reference row and with the help of this row, we will make the second row and third row elements which are common with the first column elements as zero.

The row operations to be applied on the given determinant are ${{\text{R}}_2} \to {{\text{R}}_2} - {{\text{R}}_1}$ and ${{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_1}$

After applying above row operations, the determinant simplifies to

${\text{D}} = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

{\left( {1 - 1} \right)}&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\

{\left( {1 - 1} \right)}&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}

\end{array}} \right| = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\

0&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}

\end{array}} \right| = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\

0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}

\end{array}} \right|$

By taking $\left( {b - a} \right)$ and common from second and third rows respectively, we get

${\text{D}} = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\

0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}

\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&1&{ - c} \\

0&1&{ - b}

\end{array}} \right|$

Now, expanding the determinant through the first column, we get

\[ {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&1&{ - c} \\

0&1&{ - b}

\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right) \times \left[ {1\left( { - b - \left( { - c} \right)} \right)} \right] = \left( {b - a} \right)\left( {c - a} \right)\left( { - b + c} \right) \\

\Rightarrow {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right) \\

\]

Therefore, the value of the given determinant is \[\left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right)\].

Note- In this particular problem, we will simplify the given determinant in such a way that there will exist only one non-zero element in the first column and then we will expand the determinant through the first column in order to determine the value of the determinant.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?