
What will be the value of the determinant $\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
1&b&{ca} \\
1&c&{ab}
\end{array}} \right|$.
Answer
619.5k+ views
Hint- Here, after applying some row operations we will expand the determinant through first column as $\left| {\begin{array}{*{20}{c}}
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{21}}\left( {{a_{12}}{a_{33}} - {a_{13}}{a_{32}}} \right) + {a_{31}}\left( {{a_{12}}{a_{23}} - {a_{13}}{a_{22}}} \right)$.
Complete step-by-step answer:
Let us suppose D is the value of the given determinant.
i.e., ${\text{D = }}\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
1&b&{ca} \\
1&c&{ab}
\end{array}} \right|$
We can simplify the above given determinant by using some row operations.
Here, we will take the first row as the reference row and with the help of this row, we will make the second row and third row elements which are common with the first column elements as zero.
The row operations to be applied on the given determinant are ${{\text{R}}_2} \to {{\text{R}}_2} - {{\text{R}}_1}$ and ${{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_1}$
After applying above row operations, the determinant simplifies to
${\text{D}} = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
{\left( {1 - 1} \right)}&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\
{\left( {1 - 1} \right)}&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\
0&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\
0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}
\end{array}} \right|$
By taking $\left( {b - a} \right)$ and common from second and third rows respectively, we get
${\text{D}} = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\
0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}
\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&1&{ - c} \\
0&1&{ - b}
\end{array}} \right|$
Now, expanding the determinant through the first column, we get
\[ {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&1&{ - c} \\
0&1&{ - b}
\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right) \times \left[ {1\left( { - b - \left( { - c} \right)} \right)} \right] = \left( {b - a} \right)\left( {c - a} \right)\left( { - b + c} \right) \\
\Rightarrow {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right) \\
\]
Therefore, the value of the given determinant is \[\left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right)\].
Note- In this particular problem, we will simplify the given determinant in such a way that there will exist only one non-zero element in the first column and then we will expand the determinant through the first column in order to determine the value of the determinant.
{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\
{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\
{{a_{31}}}&{{a_{32}}}&{{a_{33}}}
\end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{21}}\left( {{a_{12}}{a_{33}} - {a_{13}}{a_{32}}} \right) + {a_{31}}\left( {{a_{12}}{a_{23}} - {a_{13}}{a_{22}}} \right)$.
Complete step-by-step answer:
Let us suppose D is the value of the given determinant.
i.e., ${\text{D = }}\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
1&b&{ca} \\
1&c&{ab}
\end{array}} \right|$
We can simplify the above given determinant by using some row operations.
Here, we will take the first row as the reference row and with the help of this row, we will make the second row and third row elements which are common with the first column elements as zero.
The row operations to be applied on the given determinant are ${{\text{R}}_2} \to {{\text{R}}_2} - {{\text{R}}_1}$ and ${{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_1}$
After applying above row operations, the determinant simplifies to
${\text{D}} = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
{\left( {1 - 1} \right)}&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\
{\left( {1 - 1} \right)}&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\
0&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}
\end{array}} \right| = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\
0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}
\end{array}} \right|$
By taking $\left( {b - a} \right)$ and common from second and third rows respectively, we get
${\text{D}} = \left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\
0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}
\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&1&{ - c} \\
0&1&{ - b}
\end{array}} \right|$
Now, expanding the determinant through the first column, we get
\[ {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}
1&a&{bc} \\
0&1&{ - c} \\
0&1&{ - b}
\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right) \times \left[ {1\left( { - b - \left( { - c} \right)} \right)} \right] = \left( {b - a} \right)\left( {c - a} \right)\left( { - b + c} \right) \\
\Rightarrow {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right) \\
\]
Therefore, the value of the given determinant is \[\left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right)\].
Note- In this particular problem, we will simplify the given determinant in such a way that there will exist only one non-zero element in the first column and then we will expand the determinant through the first column in order to determine the value of the determinant.
Recently Updated Pages
Complete reduction of benzene diazonium chloride with class 12 chemistry CBSE

How can you identify optical isomers class 12 chemistry CBSE

The coating formed on the metals such as iron silver class 12 chemistry CBSE

Metals are refined by using different methods Which class 12 chemistry CBSE

What do you understand by denaturation of proteins class 12 chemistry CBSE

Assertion Nitrobenzene is used as a solvent in FriedelCrafts class 12 chemistry CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a neat and well labeled diagram of TS of ovary class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

