 Questions & Answers    Question Answers

# What will be the value of the determinant $\left| {\begin{array}{*{20}{c}} 1&a&{bc} \\ 1&b&{ca} \\ 1&c&{ab} \end{array}} \right|$.  Answer Verified
Hint- Here, after applying some row operations we will expand the determinant through first column as $\left| {\begin{array}{*{20}{c}} {{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\ {{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\ {{a_{31}}}&{{a_{32}}}&{{a_{33}}} \end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{21}}\left( {{a_{12}}{a_{33}} - {a_{13}}{a_{32}}} \right) + {a_{31}}\left( {{a_{12}}{a_{23}} - {a_{13}}{a_{22}}} \right)$.

Complete step-by-step answer:
Let us suppose D is the value of the given determinant.
i.e., ${\text{D = }}\left| {\begin{array}{*{20}{c}} 1&a&{bc} \\ 1&b&{ca} \\ 1&c&{ab} \end{array}} \right|$

We can simplify the above given determinant by using some row operations.

Here, we will take the first row as the reference row and with the help of this row, we will make the second row and third row elements which are common with the first column elements as zero.
The row operations to be applied on the given determinant are ${{\text{R}}_2} \to {{\text{R}}_2} - {{\text{R}}_1}$ and ${{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_1}$

After applying above row operations, the determinant simplifies to
${\text{D}} = \left| {\begin{array}{*{20}{c}} 1&a&{bc} \\ {\left( {1 - 1} \right)}&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\ {\left( {1 - 1} \right)}&{\left( {c - a} \right)}&{\left( {ab - bc} \right)} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 1&a&{bc} \\ 0&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\ 0&{\left( {c - a} \right)}&{\left( {ab - bc} \right)} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 1&a&{bc} \\ 0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\ 0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)} \end{array}} \right|$

By taking $\left( {b - a} \right)$ and common from second and third rows respectively, we get
${\text{D}} = \left| {\begin{array}{*{20}{c}} 1&a&{bc} \\ 0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\ 0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)} \end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}} 1&a&{bc} \\ 0&1&{ - c} \\ 0&1&{ - b} \end{array}} \right|$

Now, expanding the determinant through the first column, we get
${\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}} 1&a&{bc} \\ 0&1&{ - c} \\ 0&1&{ - b} \end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right) \times \left[ {1\left( { - b - \left( { - c} \right)} \right)} \right] = \left( {b - a} \right)\left( {c - a} \right)\left( { - b + c} \right) \\ \Rightarrow {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right) \\$

Therefore, the value of the given determinant is $\left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right)$.

Note- In this particular problem, we will simplify the given determinant in such a way that there will exist only one non-zero element in the first column and then we will expand the determinant through the first column in order to determine the value of the determinant.

Bookmark added to your notes.
View Notes
Determinant of 4x4 Matrix  Determinant of a Matrix  Determinant to Find the Area of a Triangle  Determinant of a 3 X 3 Matrix  What are the Domains of the Earth  The Language of Mathematics  CBSE Class 12 Maths Chapter-4 Determinants Formula  What are the Functions of the Human Skeletal System?  What is Mathematics?  What are the Challenges of Democracy?  