# What will be the value of the determinant $\left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

1&b&{ca} \\

1&c&{ab}

\end{array}} \right|$.

Answer

Verified

361.5k+ views

Hint- Here, after applying some row operations we will expand the determinant through first column as $\left| {\begin{array}{*{20}{c}}

{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\

{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\

{{a_{31}}}&{{a_{32}}}&{{a_{33}}}

\end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{21}}\left( {{a_{12}}{a_{33}} - {a_{13}}{a_{32}}} \right) + {a_{31}}\left( {{a_{12}}{a_{23}} - {a_{13}}{a_{22}}} \right)$.

Complete step-by-step answer:

Let us suppose D is the value of the given determinant.

i.e., ${\text{D = }}\left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

1&b&{ca} \\

1&c&{ab}

\end{array}} \right|$

We can simplify the above given determinant by using some row operations.

Here, we will take the first row as the reference row and with the help of this row, we will make the second row and third row elements which are common with the first column elements as zero.

The row operations to be applied on the given determinant are ${{\text{R}}_2} \to {{\text{R}}_2} - {{\text{R}}_1}$ and ${{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_1}$

After applying above row operations, the determinant simplifies to

${\text{D}} = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

{\left( {1 - 1} \right)}&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\

{\left( {1 - 1} \right)}&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}

\end{array}} \right| = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\

0&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}

\end{array}} \right| = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\

0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}

\end{array}} \right|$

By taking $\left( {b - a} \right)$ and common from second and third rows respectively, we get

${\text{D}} = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\

0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}

\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&1&{ - c} \\

0&1&{ - b}

\end{array}} \right|$

Now, expanding the determinant through the first column, we get

\[ {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&1&{ - c} \\

0&1&{ - b}

\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right) \times \left[ {1\left( { - b - \left( { - c} \right)} \right)} \right] = \left( {b - a} \right)\left( {c - a} \right)\left( { - b + c} \right) \\

\Rightarrow {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right) \\

\]

Therefore, the value of the given determinant is \[\left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right)\].

Note- In this particular problem, we will simplify the given determinant in such a way that there will exist only one non-zero element in the first column and then we will expand the determinant through the first column in order to determine the value of the determinant.

{{a_{11}}}&{{a_{12}}}&{{a_{13}}} \\

{{a_{21}}}&{{a_{22}}}&{{a_{23}}} \\

{{a_{31}}}&{{a_{32}}}&{{a_{33}}}

\end{array}} \right| = {a_{11}}\left( {{a_{22}}{a_{33}} - {a_{23}}{a_{32}}} \right) - {a_{21}}\left( {{a_{12}}{a_{33}} - {a_{13}}{a_{32}}} \right) + {a_{31}}\left( {{a_{12}}{a_{23}} - {a_{13}}{a_{22}}} \right)$.

Complete step-by-step answer:

Let us suppose D is the value of the given determinant.

i.e., ${\text{D = }}\left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

1&b&{ca} \\

1&c&{ab}

\end{array}} \right|$

We can simplify the above given determinant by using some row operations.

Here, we will take the first row as the reference row and with the help of this row, we will make the second row and third row elements which are common with the first column elements as zero.

The row operations to be applied on the given determinant are ${{\text{R}}_2} \to {{\text{R}}_2} - {{\text{R}}_1}$ and ${{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_1}$

After applying above row operations, the determinant simplifies to

${\text{D}} = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

{\left( {1 - 1} \right)}&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\

{\left( {1 - 1} \right)}&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}

\end{array}} \right| = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&{\left( {b - a} \right)}&{\left( {ca - bc} \right)} \\

0&{\left( {c - a} \right)}&{\left( {ab - bc} \right)}

\end{array}} \right| = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\

0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}

\end{array}} \right|$

By taking $\left( {b - a} \right)$ and common from second and third rows respectively, we get

${\text{D}} = \left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&{\left( {b - a} \right)}&{ - c\left( {b - a} \right)} \\

0&{\left( {c - a} \right)}&{ - b\left( {c - a} \right)}

\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&1&{ - c} \\

0&1&{ - b}

\end{array}} \right|$

Now, expanding the determinant through the first column, we get

\[ {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left| {\begin{array}{*{20}{c}}

1&a&{bc} \\

0&1&{ - c} \\

0&1&{ - b}

\end{array}} \right| = \left( {b - a} \right)\left( {c - a} \right) \times \left[ {1\left( { - b - \left( { - c} \right)} \right)} \right] = \left( {b - a} \right)\left( {c - a} \right)\left( { - b + c} \right) \\

\Rightarrow {\text{D}} = \left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right) \\

\]

Therefore, the value of the given determinant is \[\left( {b - a} \right)\left( {c - a} \right)\left( {c - b} \right)\].

Note- In this particular problem, we will simplify the given determinant in such a way that there will exist only one non-zero element in the first column and then we will expand the determinant through the first column in order to determine the value of the determinant.

Last updated date: 24th Sep 2023

â€¢

Total views: 361.5k

â€¢

Views today: 7.61k

Recently Updated Pages

What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

Difference Between Plant Cell and Animal Cell

What is the basic unit of classification class 11 biology CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

One cusec is equal to how many liters class 8 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers