
The value of ‘g’ on the surface of the earth is
A. Maximum at poles
B. Maximum at equator
C. Same everywhere
D. Minimum at poles
Answer
232.8k+ views
Hint: Solution can be found by observing the gravitational attraction formula, where gravitational force is inversely proportional to the distance from the center of the earth. Thus, extending it to the concept that Earth is not a perfect sphere and the distance of poles and the equator is different from the center of earth.
Complete step-by-step answer:
Gravitational attractive force felt by a body on the earth’s surface is given as;
$\overset{\to }{\mathop{F}}\,=\dfrac{GMm}{{{r}^{2}}}$
G is the gravitational constant
r is the distance from the earth’s center
M is the mass of the earth
M is the mass of the body.

We can observe from the above image that earth is not a perfect sphere. It is slightly bulged at the equator, and flattened at the poles. Thus, from the above diagram we can observe that;
$R_e > R_p$
where, $R_e$ is the diameter at the equator, $R_p$ is the diameter at the poles
We know from the gravitational attraction and thus the acceleration due to gravity ‘g’ becomes:
$\begin{align}
& g=\dfrac{GM}{{{r}^{2}}} \\
& \Rightarrow g\propto \dfrac{1}{{{r}^{2}}} \\
\end{align}$
Thus, for poles:
${{g}_{p}}\propto \dfrac{1}{R_{p}^{2}}$
Thus, for equator:
${{g}_{p}}\propto \dfrac{1}{R_{e}^{2}}$
So, since ${{R}_{e}}>{{R}_{p}},{{g}_{e}}$ will be less than ${{g}_{p}}$. That is, gravitational force and the ‘g’ will be maximum at the poles.
Therefore, the correct answer to this question is option A. That is ‘g’ is maximum at poles.
Note: The gravitational force is an attractive force that is, it always attracts and never repels. It never pushes two masses further, only a pulling force is generated. The ‘g’ is the acceleration of gravity and is equal to $9.8m/{{s}^{2}}$ at Earth surface, i.e., at sea level.
Complete step-by-step answer:
Gravitational attractive force felt by a body on the earth’s surface is given as;
$\overset{\to }{\mathop{F}}\,=\dfrac{GMm}{{{r}^{2}}}$
G is the gravitational constant
r is the distance from the earth’s center
M is the mass of the earth
M is the mass of the body.

We can observe from the above image that earth is not a perfect sphere. It is slightly bulged at the equator, and flattened at the poles. Thus, from the above diagram we can observe that;
$R_e > R_p$
where, $R_e$ is the diameter at the equator, $R_p$ is the diameter at the poles
We know from the gravitational attraction and thus the acceleration due to gravity ‘g’ becomes:
$\begin{align}
& g=\dfrac{GM}{{{r}^{2}}} \\
& \Rightarrow g\propto \dfrac{1}{{{r}^{2}}} \\
\end{align}$
Thus, for poles:
${{g}_{p}}\propto \dfrac{1}{R_{p}^{2}}$
Thus, for equator:
${{g}_{p}}\propto \dfrac{1}{R_{e}^{2}}$
So, since ${{R}_{e}}>{{R}_{p}},{{g}_{e}}$ will be less than ${{g}_{p}}$. That is, gravitational force and the ‘g’ will be maximum at the poles.
Therefore, the correct answer to this question is option A. That is ‘g’ is maximum at poles.
Note: The gravitational force is an attractive force that is, it always attracts and never repels. It never pushes two masses further, only a pulling force is generated. The ‘g’ is the acceleration of gravity and is equal to $9.8m/{{s}^{2}}$ at Earth surface, i.e., at sea level.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

