The value of determinant $A$, where $A$$=$\[\left( \begin{matrix}
1 & \cos \theta & 0 \\
-\cos \theta & 1 & \cos \theta \\
-1 & -\cos \theta & 1 \\
\end{matrix} \right)\] lies:
(a) in the close interval $\left[ 1,2 \right]$
(b) in the close interval $\left[ 0,1 \right]$
(c) in the open interval $\left( 0,1 \right)$
(d) in the open interval $\left( 1,2 \right)$
Answer
Verified
502.5k+ views
Hint: Find the value of determinant $A$ by expanding the given determinant as per rule. The value will be obtained as a function of $\cos \theta $. Now, find the range of that function of $\theta $. The obtained range will be the answer.
Complete step-by-step answer:
In linear algebra, the determinant is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the linear transformation described by the matrix. The determinant of a matrix $A$ is denoted as $\det \left( A \right)$, $\det A$ or $\left| A \right|$. Determinants can only be found if the given matrix is a square matrix. Square matrix is a type of matrix in which there are equal numbers of rows and columns. We already know how to expand a determinant. Consider a matrix of $3\times 3$ dimension: $\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$. Now, ${{a}_{11}},{{a}_{12}},{{a}_{13}},{{a}_{14}}......$ are its entries. To find its determinant value, we use the formula,$\det $$\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$$=$ \[{{a}_{11}}\times \det \left( \begin{matrix}
{{a}_{22}} & {{a}_{23}} \\
{{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)-{{a}_{12}}\times \det \left( \begin{matrix}
{{a}_{21}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{33}} \\
\end{matrix} \right)+{{a}_{13}}\times \det \left( \begin{matrix}
{{a}_{21}} & {{a}_{22}} \\
{{a}_{31}} & {{a}_{32}} \\
\end{matrix} \right)\]
Now, \[\det \left( \begin{matrix}
{{a}_{22}} & {{a}_{23}} \\
{{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)={{a}_{22}}\times {{a}_{23}}-{{a}_{32}}\times {{a}_{23}}\].
Now, $\det $$A$$=$$\det $\[\left( \begin{matrix}
1 & \cos \theta & 0 \\
-\cos \theta & 1 & \cos \theta \\
-1 & -\cos \theta & 1 \\
\end{matrix} \right)\]
\[\begin{align}
& =1\times \det \left( \begin{matrix}
1 & \cos \theta \\
-\cos \theta & 1 \\
\end{matrix} \right)-\cos \theta \times \det \left( \begin{matrix}
-\cos \theta & \cos \theta \\
-1 & 1 \\
\end{matrix} \right)+0\times \det \left( \begin{matrix}
-\cos \theta & 1 \\
-1 & -\cos \theta \\
\end{matrix} \right) \\
& =1\times \left\{ (1\times 1)-\cos \theta \times (-\cos \theta ) \right\}-\cos \theta \times \left\{ (-\cos \theta \times 1)-(-1\times \cos \theta ) \right\}+0\times \left\{ (-\cos \theta )\times (-\cos \theta )-(-1\times 1) \right\} \\
\end{align}\]$\begin{align}
& =1+{{\cos }^{2}}\theta -\cos \theta (-\cos \theta +\cos \theta )+0 \\
& =1+{{\cos }^{2}}\theta \\
\end{align}$
Now, we know that ${{\cos }^{2}}\theta $ has range from 0 to 1 in closed interval and therefore, $1+{{\cos }^{2}}\theta $ will have a range from 1 to 2 in closed interval.
Hence, option (a) is the correct answer.
Note: Since, the value of $\cos \theta $ lies in a closed interval of -1 and 1, therefore, value of ${{\cos }^{2}}\theta $ will have a maximum of 1 and minimum of 0 and when 1 is added to the minimum and maximum value of ${{\cos }^{2}}\theta $ the new minima and maxima of the function becomes 1 and 2 respectively. We can even convert the final answer into sine function and do the same application for range.
Complete step-by-step answer:
In linear algebra, the determinant is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the linear transformation described by the matrix. The determinant of a matrix $A$ is denoted as $\det \left( A \right)$, $\det A$ or $\left| A \right|$. Determinants can only be found if the given matrix is a square matrix. Square matrix is a type of matrix in which there are equal numbers of rows and columns. We already know how to expand a determinant. Consider a matrix of $3\times 3$ dimension: $\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$. Now, ${{a}_{11}},{{a}_{12}},{{a}_{13}},{{a}_{14}}......$ are its entries. To find its determinant value, we use the formula,$\det $$\left( \begin{matrix}
{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\
{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)$$=$ \[{{a}_{11}}\times \det \left( \begin{matrix}
{{a}_{22}} & {{a}_{23}} \\
{{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)-{{a}_{12}}\times \det \left( \begin{matrix}
{{a}_{21}} & {{a}_{23}} \\
{{a}_{31}} & {{a}_{33}} \\
\end{matrix} \right)+{{a}_{13}}\times \det \left( \begin{matrix}
{{a}_{21}} & {{a}_{22}} \\
{{a}_{31}} & {{a}_{32}} \\
\end{matrix} \right)\]
Now, \[\det \left( \begin{matrix}
{{a}_{22}} & {{a}_{23}} \\
{{a}_{32}} & {{a}_{33}} \\
\end{matrix} \right)={{a}_{22}}\times {{a}_{23}}-{{a}_{32}}\times {{a}_{23}}\].
Now, $\det $$A$$=$$\det $\[\left( \begin{matrix}
1 & \cos \theta & 0 \\
-\cos \theta & 1 & \cos \theta \\
-1 & -\cos \theta & 1 \\
\end{matrix} \right)\]
\[\begin{align}
& =1\times \det \left( \begin{matrix}
1 & \cos \theta \\
-\cos \theta & 1 \\
\end{matrix} \right)-\cos \theta \times \det \left( \begin{matrix}
-\cos \theta & \cos \theta \\
-1 & 1 \\
\end{matrix} \right)+0\times \det \left( \begin{matrix}
-\cos \theta & 1 \\
-1 & -\cos \theta \\
\end{matrix} \right) \\
& =1\times \left\{ (1\times 1)-\cos \theta \times (-\cos \theta ) \right\}-\cos \theta \times \left\{ (-\cos \theta \times 1)-(-1\times \cos \theta ) \right\}+0\times \left\{ (-\cos \theta )\times (-\cos \theta )-(-1\times 1) \right\} \\
\end{align}\]$\begin{align}
& =1+{{\cos }^{2}}\theta -\cos \theta (-\cos \theta +\cos \theta )+0 \\
& =1+{{\cos }^{2}}\theta \\
\end{align}$
Now, we know that ${{\cos }^{2}}\theta $ has range from 0 to 1 in closed interval and therefore, $1+{{\cos }^{2}}\theta $ will have a range from 1 to 2 in closed interval.
Hence, option (a) is the correct answer.
Note: Since, the value of $\cos \theta $ lies in a closed interval of -1 and 1, therefore, value of ${{\cos }^{2}}\theta $ will have a maximum of 1 and minimum of 0 and when 1 is added to the minimum and maximum value of ${{\cos }^{2}}\theta $ the new minima and maxima of the function becomes 1 and 2 respectively. We can even convert the final answer into sine function and do the same application for range.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
Which are the Top 10 Largest Countries of the World?
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
What are the major means of transport Explain each class 12 social science CBSE
Why is the cell called the structural and functional class 12 biology CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
What is a transformer Explain the principle construction class 12 physics CBSE