# The value of determinant $A$, where $A$$=$\[\left( \begin{matrix}

1 & \cos \theta & 0 \\

-\cos \theta & 1 & \cos \theta \\

-1 & -\cos \theta & 1 \\

\end{matrix} \right)\] lies:

(a) in the close interval $\left[ 1,2 \right]$

(b) in the close interval $\left[ 0,1 \right]$

(c) in the open interval $\left( 0,1 \right)$

(d) in the open interval $\left( 1,2 \right)$

Last updated date: 25th Mar 2023

•

Total views: 306k

•

Views today: 8.82k

Answer

Verified

306k+ views

Hint: Find the value of determinant $A$ by expanding the given determinant as per rule. The value will be obtained as a function of $\cos \theta $. Now, find the range of that function of $\theta $. The obtained range will be the answer.

In linear algebra, the determinant is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the linear transformation described by the matrix. The determinant of a matrix $A$ is denoted as $\det \left( A \right)$, $\det A$ or $\left| A \right|$. Determinants can only be found if the given matrix is a square matrix. Square matrix is a type of matrix in which there are equal numbers of rows and columns. We already know how to expand a determinant. Consider a matrix of $3\times 3$ dimension: $\left( \begin{matrix}

{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\

{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\

{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\

\end{matrix} \right)$. Now, ${{a}_{11}},{{a}_{12}},{{a}_{13}},{{a}_{14}}......$ are its entries. To find its determinant value, we use the formula,$\det $$\left( \begin{matrix}

{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\

{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\

{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\

\end{matrix} \right)$$=$ \[{{a}_{11}}\times \det \left( \begin{matrix}

{{a}_{22}} & {{a}_{23}} \\

{{a}_{32}} & {{a}_{33}} \\

\end{matrix} \right)-{{a}_{12}}\times \det \left( \begin{matrix}

{{a}_{21}} & {{a}_{23}} \\

{{a}_{31}} & {{a}_{33}} \\

\end{matrix} \right)+{{a}_{13}}\times \det \left( \begin{matrix}

{{a}_{21}} & {{a}_{22}} \\

{{a}_{31}} & {{a}_{32}} \\

\end{matrix} \right)\]

Now, \[\det \left( \begin{matrix}

{{a}_{22}} & {{a}_{23}} \\

{{a}_{32}} & {{a}_{33}} \\

\end{matrix} \right)={{a}_{22}}\times {{a}_{23}}-{{a}_{32}}\times {{a}_{23}}\].

Now, $\det $$A$$=$$\det $\[\left( \begin{matrix}

1 & \cos \theta & 0 \\

-\cos \theta & 1 & \cos \theta \\

-1 & -\cos \theta & 1 \\

\end{matrix} \right)\]

\[\begin{align}

& =1\times \det \left( \begin{matrix}

1 & \cos \theta \\

-\cos \theta & 1 \\

\end{matrix} \right)-\cos \theta \times \det \left( \begin{matrix}

-\cos \theta & \cos \theta \\

-1 & 1 \\

\end{matrix} \right)+0\times \det \left( \begin{matrix}

-\cos \theta & 1 \\

-1 & -\cos \theta \\

\end{matrix} \right) \\

& =1\times \left\{ (1\times 1)-\cos \theta \times (-\cos \theta ) \right\}-\cos \theta \times \left\{ (-\cos \theta \times 1)-(-1\times \cos \theta ) \right\}+0\times \left\{ (-\cos \theta )\times (-\cos \theta )-(-1\times 1) \right\} \\

\end{align}\]$\begin{align}

& =1+{{\cos }^{2}}\theta -\cos \theta (-\cos \theta +\cos \theta )+0 \\

& =1+{{\cos }^{2}}\theta \\

\end{align}$

Now, we know that ${{\cos }^{2}}\theta $ has range from 0 to 1 in closed interval and therefore, $1+{{\cos }^{2}}\theta $ will have a range from 1 to 2 in closed interval.

Hence, option (a) is the correct answer.

Note: Since, the value of $\cos \theta $ lies in a closed interval of -1 and 1, therefore, value of ${{\cos }^{2}}\theta $ will have a maximum of 1 and minimum of 0 and when 1 is added to the minimum and maximum value of ${{\cos }^{2}}\theta $ the new minima and maxima of the function becomes 1 and 2 respectively. We can even convert the final answer into sine function and do the same application for range.

__Complete step-by-step answer:__In linear algebra, the determinant is a scalar value that can be computed from the elements of a square matrix and encodes certain properties of the linear transformation described by the matrix. The determinant of a matrix $A$ is denoted as $\det \left( A \right)$, $\det A$ or $\left| A \right|$. Determinants can only be found if the given matrix is a square matrix. Square matrix is a type of matrix in which there are equal numbers of rows and columns. We already know how to expand a determinant. Consider a matrix of $3\times 3$ dimension: $\left( \begin{matrix}

{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\

{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\

{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\

\end{matrix} \right)$. Now, ${{a}_{11}},{{a}_{12}},{{a}_{13}},{{a}_{14}}......$ are its entries. To find its determinant value, we use the formula,$\det $$\left( \begin{matrix}

{{a}_{11}} & {{a}_{12}} & {{a}_{13}} \\

{{a}_{21}} & {{a}_{22}} & {{a}_{23}} \\

{{a}_{31}} & {{a}_{32}} & {{a}_{33}} \\

\end{matrix} \right)$$=$ \[{{a}_{11}}\times \det \left( \begin{matrix}

{{a}_{22}} & {{a}_{23}} \\

{{a}_{32}} & {{a}_{33}} \\

\end{matrix} \right)-{{a}_{12}}\times \det \left( \begin{matrix}

{{a}_{21}} & {{a}_{23}} \\

{{a}_{31}} & {{a}_{33}} \\

\end{matrix} \right)+{{a}_{13}}\times \det \left( \begin{matrix}

{{a}_{21}} & {{a}_{22}} \\

{{a}_{31}} & {{a}_{32}} \\

\end{matrix} \right)\]

Now, \[\det \left( \begin{matrix}

{{a}_{22}} & {{a}_{23}} \\

{{a}_{32}} & {{a}_{33}} \\

\end{matrix} \right)={{a}_{22}}\times {{a}_{23}}-{{a}_{32}}\times {{a}_{23}}\].

Now, $\det $$A$$=$$\det $\[\left( \begin{matrix}

1 & \cos \theta & 0 \\

-\cos \theta & 1 & \cos \theta \\

-1 & -\cos \theta & 1 \\

\end{matrix} \right)\]

\[\begin{align}

& =1\times \det \left( \begin{matrix}

1 & \cos \theta \\

-\cos \theta & 1 \\

\end{matrix} \right)-\cos \theta \times \det \left( \begin{matrix}

-\cos \theta & \cos \theta \\

-1 & 1 \\

\end{matrix} \right)+0\times \det \left( \begin{matrix}

-\cos \theta & 1 \\

-1 & -\cos \theta \\

\end{matrix} \right) \\

& =1\times \left\{ (1\times 1)-\cos \theta \times (-\cos \theta ) \right\}-\cos \theta \times \left\{ (-\cos \theta \times 1)-(-1\times \cos \theta ) \right\}+0\times \left\{ (-\cos \theta )\times (-\cos \theta )-(-1\times 1) \right\} \\

\end{align}\]$\begin{align}

& =1+{{\cos }^{2}}\theta -\cos \theta (-\cos \theta +\cos \theta )+0 \\

& =1+{{\cos }^{2}}\theta \\

\end{align}$

Now, we know that ${{\cos }^{2}}\theta $ has range from 0 to 1 in closed interval and therefore, $1+{{\cos }^{2}}\theta $ will have a range from 1 to 2 in closed interval.

Hence, option (a) is the correct answer.

Note: Since, the value of $\cos \theta $ lies in a closed interval of -1 and 1, therefore, value of ${{\cos }^{2}}\theta $ will have a maximum of 1 and minimum of 0 and when 1 is added to the minimum and maximum value of ${{\cos }^{2}}\theta $ the new minima and maxima of the function becomes 1 and 2 respectively. We can even convert the final answer into sine function and do the same application for range.

Recently Updated Pages

If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts

What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?