
The sound intensity level at a point 4 m from the point source is 10 dB, and then the sound level at a distance 2 m from the same source will be
(A) 26 dB
(B) 16 dB
(C) 23 dB
(D) 32 dB
Answer
232.8k+ views
Hint: The intensity of sound decreases with increase in the distance. Use this relation to combine corresponding distances and find the intensity.
Complete step-by-step solution:
The sound level intensity depends on various factors and one of them is distance from the source. Intensity level of sound (I) is inversely proportional to the square of the distance from the source(r).
$I \propto \dfrac{1}{{{r^2}}}$
From the given data:
\[{r_1} = {\text{ }}2m\]and \[{r_2} = {\text{ }}4m\]
\[{\beta _2} = {\text{ }}10{\text{ }}dB\]
Let $I_1$ and $I_2$ be the intensity at distance $r_1$ and $r_2$ respectively.
Using the above relation;
$
I \propto \dfrac{1}{{{r_1}^2}} \Rightarrow (1) \\
I \propto \dfrac{1}{{{r_2}^2}} \Rightarrow (2) \\
$
Combining equation (1) and (2), we get:
$\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{r_2^2}}{{r_1^2}}$
We know the formula for sound level intensity
$\beta = 10{\log _{10}}\left( {\dfrac{I}{{{I_0}}}} \right)$
Using the above formula, Let,
$
{\beta _1} = 10{\log _{10}}\left( {\dfrac{{{I_1}}}{{{I_0}}}} \right) \Rightarrow (3) \\
{\beta _2} = 10{\log _{10}}\left( {\dfrac{{{I_2}}}{{{I_0}}}} \right) \Rightarrow (4) \\
$
Subtracting equation (4) from (3)
${\beta _1} - {\beta _2} = 10{\log _{10}}\left( {\dfrac{{{I_1}}}{{{I_2}}}} \right)$
But from the previous relation we know that
$\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{r_2^2}}{{r_1^2}}$
On substituting the relation we get,
${\beta _1} - {\beta _2} = 10{\log _{10}}\left( {\dfrac{{r_2^2}}{{r_2^2}}} \right)$
Now substitute the given data in the above formula,
${\beta _1} - 10 = 10{\log _{10}}\left( {\dfrac{{16}}{4}} \right)$
$
{\beta _1} - 10 = 10{\log _{10}}(4) \\
{\beta _1} - 10 = 10(0.6020) \\
{\beta _1} - 10 = 6.020 \\
{\beta _1} = 16.020 \simeq 16dB \\
$
So, the sound level intensity at a distance of 2m is 16 dB and the correct option is B.
Note: Make sure that the logarithm value is natural or to the base 10 and substitute the right value.\[{I_0}\] is the minimum intensity that can be heard which is called the threshold of hearing\[ = {\text{ }}{10^{ - 12}}W{m^{ - 2}}\] at KHz.
Complete step-by-step solution:
The sound level intensity depends on various factors and one of them is distance from the source. Intensity level of sound (I) is inversely proportional to the square of the distance from the source(r).
$I \propto \dfrac{1}{{{r^2}}}$
From the given data:
\[{r_1} = {\text{ }}2m\]and \[{r_2} = {\text{ }}4m\]
\[{\beta _2} = {\text{ }}10{\text{ }}dB\]
Let $I_1$ and $I_2$ be the intensity at distance $r_1$ and $r_2$ respectively.
Using the above relation;
$
I \propto \dfrac{1}{{{r_1}^2}} \Rightarrow (1) \\
I \propto \dfrac{1}{{{r_2}^2}} \Rightarrow (2) \\
$
Combining equation (1) and (2), we get:
$\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{r_2^2}}{{r_1^2}}$
We know the formula for sound level intensity
$\beta = 10{\log _{10}}\left( {\dfrac{I}{{{I_0}}}} \right)$
Using the above formula, Let,
$
{\beta _1} = 10{\log _{10}}\left( {\dfrac{{{I_1}}}{{{I_0}}}} \right) \Rightarrow (3) \\
{\beta _2} = 10{\log _{10}}\left( {\dfrac{{{I_2}}}{{{I_0}}}} \right) \Rightarrow (4) \\
$
Subtracting equation (4) from (3)
${\beta _1} - {\beta _2} = 10{\log _{10}}\left( {\dfrac{{{I_1}}}{{{I_2}}}} \right)$
But from the previous relation we know that
$\dfrac{{{I_1}}}{{{I_2}}} = \dfrac{{r_2^2}}{{r_1^2}}$
On substituting the relation we get,
${\beta _1} - {\beta _2} = 10{\log _{10}}\left( {\dfrac{{r_2^2}}{{r_2^2}}} \right)$
Now substitute the given data in the above formula,
${\beta _1} - 10 = 10{\log _{10}}\left( {\dfrac{{16}}{4}} \right)$
$
{\beta _1} - 10 = 10{\log _{10}}(4) \\
{\beta _1} - 10 = 10(0.6020) \\
{\beta _1} - 10 = 6.020 \\
{\beta _1} = 16.020 \simeq 16dB \\
$
So, the sound level intensity at a distance of 2m is 16 dB and the correct option is B.
Note: Make sure that the logarithm value is natural or to the base 10 and substitute the right value.\[{I_0}\] is the minimum intensity that can be heard which is called the threshold of hearing\[ = {\text{ }}{10^{ - 12}}W{m^{ - 2}}\] at KHz.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

