The set points where \[f(x)=\dfrac{x}{1+|x|}\] is differentiable is
(a) \[(-\infty ,0)\cup (0,\infty )\]
(b) \[(-\infty ,1)\cup (-1,\infty )\]
(c) \[(-\infty ,\infty )\]
(d)\[(0,\infty )\]
Last updated date: 18th Mar 2023
•
Total views: 306k
•
Views today: 3.87k
Answer
306k+ views
Hint: Separate the modulus part. Then find out the left hand derivative and right hand derivative. And compare them.
Complete step-by-step answer:
The given function is \[f(x)=\dfrac{x}{1+|x|}.\]
Here we can observe a modulus function in the denominator, so we can rewrite this function as,
\[f(x)=\left\{ \begin{matrix}
\dfrac{x}{1+x},x\ge 0 \\
\dfrac{x}{1-x},x<0 \\
\end{matrix} \right.\]
Now we will check the continuity and differentiability at \[x=0\].
First of all let us check the continuity at \[x=0\].
We know for a function f(x) to be continuous at \[x=0\] its left hand limit (LHL) should be equal to right hand limit (RHL).
So, let us consider the LHL first.
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{1-x}\]
Applying the limits, we have
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{0}{1-0}=0\]
So, $LHL=0........(i)$
Now, we will find the RHL.
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{1+x}=\dfrac{0}{1+0}=0\]
Applying the limits, we have
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{0}{1+0}=0\]
So, $RHL=0........(ii)$
From equation (i) and (ii), we have
LHL = RHL
So, the given function f(x) is continuous at \[x=0\].
Now, we shall check the differentiability.
We know for a function to be differentiable at \[x=0\] its left hand derivative (LHD) should be equal to its right hand derivative (RHD).
First, we can find LHD.
\[{{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{d}{dx}\left( \dfrac{x}{1-x} \right)\]
For differentiating this function we will use the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}\]
So the LHD becomes,
\[\begin{align}
& {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-x)\dfrac{d}{dx}(x)-x\dfrac{d}{dx}(1-x)}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-x)(1)-x(-1)}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1-x+x}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{(1-x)}^{2}}} \\
\end{align}\]
Now, applying the limit, we have
\[{{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\dfrac{1}{{{(1-0)}^{2}}}=1\]
\[\therefore LHD=1.......(iii)\]
Now, we will find the RHD.
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{d}{dx}\left( \dfrac{x}{1+x} \right)\]
Again, applying the quotient rule, we have
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1+x)\dfrac{d}{dx}(x)-x\dfrac{d}{dx}(1+x)}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1+x)(1)-x(1)}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1+x-x}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{(1+x)}^{2}}} \\
\end{align}\]
Now, by applying the limits we get,
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\dfrac{1}{{{(1+0)}^{2}}}=1\]
\[\therefore RHD=1.......(iv)\]
So, from equation (iii) and (iv), we see that $LHD=RHD$ .
Hence, f(x) is differentiable at $x=0$.
Hence, we conclude that the given function is differentiable from \[+\infty \] to \[-\infty \].
Hence, the correct answer is option (c).
Answer is Option (c).
Note: For finding the left hand and right hand derivative we can use the formula,
$\begin{align}
& LHD=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(a-x)-f(a)}{-h} \\
& RHD=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(a+x)-f(a)}{h} \\
\end{align}$
Using these formulas also we will get the same result.
Complete step-by-step answer:
The given function is \[f(x)=\dfrac{x}{1+|x|}.\]
Here we can observe a modulus function in the denominator, so we can rewrite this function as,
\[f(x)=\left\{ \begin{matrix}
\dfrac{x}{1+x},x\ge 0 \\
\dfrac{x}{1-x},x<0 \\
\end{matrix} \right.\]
Now we will check the continuity and differentiability at \[x=0\].
First of all let us check the continuity at \[x=0\].
We know for a function f(x) to be continuous at \[x=0\] its left hand limit (LHL) should be equal to right hand limit (RHL).
So, let us consider the LHL first.
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{1-x}\]
Applying the limits, we have
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{0}{1-0}=0\]
So, $LHL=0........(i)$
Now, we will find the RHL.
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{1+x}=\dfrac{0}{1+0}=0\]
Applying the limits, we have
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{0}{1+0}=0\]
So, $RHL=0........(ii)$
From equation (i) and (ii), we have
LHL = RHL
So, the given function f(x) is continuous at \[x=0\].
Now, we shall check the differentiability.
We know for a function to be differentiable at \[x=0\] its left hand derivative (LHD) should be equal to its right hand derivative (RHD).
First, we can find LHD.
\[{{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{d}{dx}\left( \dfrac{x}{1-x} \right)\]
For differentiating this function we will use the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}\]
So the LHD becomes,
\[\begin{align}
& {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-x)\dfrac{d}{dx}(x)-x\dfrac{d}{dx}(1-x)}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-x)(1)-x(-1)}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1-x+x}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{(1-x)}^{2}}} \\
\end{align}\]
Now, applying the limit, we have
\[{{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\dfrac{1}{{{(1-0)}^{2}}}=1\]
\[\therefore LHD=1.......(iii)\]
Now, we will find the RHD.
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{d}{dx}\left( \dfrac{x}{1+x} \right)\]
Again, applying the quotient rule, we have
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1+x)\dfrac{d}{dx}(x)-x\dfrac{d}{dx}(1+x)}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1+x)(1)-x(1)}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1+x-x}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{(1+x)}^{2}}} \\
\end{align}\]
Now, by applying the limits we get,
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\dfrac{1}{{{(1+0)}^{2}}}=1\]
\[\therefore RHD=1.......(iv)\]
So, from equation (iii) and (iv), we see that $LHD=RHD$ .
Hence, f(x) is differentiable at $x=0$.
Hence, we conclude that the given function is differentiable from \[+\infty \] to \[-\infty \].
Hence, the correct answer is option (c).
Answer is Option (c).
Note: For finding the left hand and right hand derivative we can use the formula,
$\begin{align}
& LHD=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(a-x)-f(a)}{-h} \\
& RHD=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(a+x)-f(a)}{h} \\
\end{align}$
Using these formulas also we will get the same result.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
