
The set points where \[f(x)=\dfrac{x}{1+|x|}\] is differentiable is
(a) \[(-\infty ,0)\cup (0,\infty )\]
(b) \[(-\infty ,1)\cup (-1,\infty )\]
(c) \[(-\infty ,\infty )\]
(d)\[(0,\infty )\]
Answer
607.2k+ views
Hint: Separate the modulus part. Then find out the left hand derivative and right hand derivative. And compare them.
Complete step-by-step answer:
The given function is \[f(x)=\dfrac{x}{1+|x|}.\]
Here we can observe a modulus function in the denominator, so we can rewrite this function as,
\[f(x)=\left\{ \begin{matrix}
\dfrac{x}{1+x},x\ge 0 \\
\dfrac{x}{1-x},x<0 \\
\end{matrix} \right.\]
Now we will check the continuity and differentiability at \[x=0\].
First of all let us check the continuity at \[x=0\].
We know for a function f(x) to be continuous at \[x=0\] its left hand limit (LHL) should be equal to right hand limit (RHL).
So, let us consider the LHL first.
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{1-x}\]
Applying the limits, we have
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{0}{1-0}=0\]
So, $LHL=0........(i)$
Now, we will find the RHL.
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{1+x}=\dfrac{0}{1+0}=0\]
Applying the limits, we have
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{0}{1+0}=0\]
So, $RHL=0........(ii)$
From equation (i) and (ii), we have
LHL = RHL
So, the given function f(x) is continuous at \[x=0\].
Now, we shall check the differentiability.
We know for a function to be differentiable at \[x=0\] its left hand derivative (LHD) should be equal to its right hand derivative (RHD).
First, we can find LHD.
\[{{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{d}{dx}\left( \dfrac{x}{1-x} \right)\]
For differentiating this function we will use the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}\]
So the LHD becomes,
\[\begin{align}
& {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-x)\dfrac{d}{dx}(x)-x\dfrac{d}{dx}(1-x)}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-x)(1)-x(-1)}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1-x+x}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{(1-x)}^{2}}} \\
\end{align}\]
Now, applying the limit, we have
\[{{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\dfrac{1}{{{(1-0)}^{2}}}=1\]
\[\therefore LHD=1.......(iii)\]
Now, we will find the RHD.
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{d}{dx}\left( \dfrac{x}{1+x} \right)\]
Again, applying the quotient rule, we have
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1+x)\dfrac{d}{dx}(x)-x\dfrac{d}{dx}(1+x)}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1+x)(1)-x(1)}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1+x-x}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{(1+x)}^{2}}} \\
\end{align}\]
Now, by applying the limits we get,
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\dfrac{1}{{{(1+0)}^{2}}}=1\]
\[\therefore RHD=1.......(iv)\]
So, from equation (iii) and (iv), we see that $LHD=RHD$ .
Hence, f(x) is differentiable at $x=0$.
Hence, we conclude that the given function is differentiable from \[+\infty \] to \[-\infty \].
Hence, the correct answer is option (c).
Answer is Option (c).
Note: For finding the left hand and right hand derivative we can use the formula,
$\begin{align}
& LHD=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(a-x)-f(a)}{-h} \\
& RHD=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(a+x)-f(a)}{h} \\
\end{align}$
Using these formulas also we will get the same result.
Complete step-by-step answer:
The given function is \[f(x)=\dfrac{x}{1+|x|}.\]
Here we can observe a modulus function in the denominator, so we can rewrite this function as,
\[f(x)=\left\{ \begin{matrix}
\dfrac{x}{1+x},x\ge 0 \\
\dfrac{x}{1-x},x<0 \\
\end{matrix} \right.\]
Now we will check the continuity and differentiability at \[x=0\].
First of all let us check the continuity at \[x=0\].
We know for a function f(x) to be continuous at \[x=0\] its left hand limit (LHL) should be equal to right hand limit (RHL).
So, let us consider the LHL first.
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{1-x}\]
Applying the limits, we have
\[\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f(x)=\dfrac{0}{1-0}=0\]
So, $LHL=0........(i)$
Now, we will find the RHL.
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{x}{1+x}=\dfrac{0}{1+0}=0\]
Applying the limits, we have
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f(x)=\dfrac{0}{1+0}=0\]
So, $RHL=0........(ii)$
From equation (i) and (ii), we have
LHL = RHL
So, the given function f(x) is continuous at \[x=0\].
Now, we shall check the differentiability.
We know for a function to be differentiable at \[x=0\] its left hand derivative (LHD) should be equal to its right hand derivative (RHD).
First, we can find LHD.
\[{{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{d}{dx}\left( \dfrac{x}{1-x} \right)\]
For differentiating this function we will use the quotient rule, i.e., \[\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}(u)-u\dfrac{d}{dx}(v)}{{{v}^{2}}}\]
So the LHD becomes,
\[\begin{align}
& {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-x)\dfrac{d}{dx}(x)-x\dfrac{d}{dx}(1-x)}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1-x)(1)-x(-1)}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1-x+x}{{{(1-x)}^{2}}} \\
& \Rightarrow {{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{(1-x)}^{2}}} \\
\end{align}\]
Now, applying the limit, we have
\[{{\underset{x\to {{0}^{-}}}{\mathop{\lim f}}\,}^{'}}(x)=\dfrac{1}{{{(1-0)}^{2}}}=1\]
\[\therefore LHD=1.......(iii)\]
Now, we will find the RHD.
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{d}{dx}\left( \dfrac{x}{1+x} \right)\]
Again, applying the quotient rule, we have
\[\begin{align}
& \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1+x)\dfrac{d}{dx}(x)-x\dfrac{d}{dx}(1+x)}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{(1+x)(1)-x(1)}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1+x-x}{{{(1+x)}^{2}}} \\
& \Rightarrow \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\underset{x\to 0}{\mathop{\lim }}\,\dfrac{1}{{{(1+x)}^{2}}} \\
\end{align}\]
Now, by applying the limits we get,
\[\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,{{f}^{'}}(x)=\dfrac{1}{{{(1+0)}^{2}}}=1\]
\[\therefore RHD=1.......(iv)\]
So, from equation (iii) and (iv), we see that $LHD=RHD$ .
Hence, f(x) is differentiable at $x=0$.
Hence, we conclude that the given function is differentiable from \[+\infty \] to \[-\infty \].
Hence, the correct answer is option (c).
Answer is Option (c).
Note: For finding the left hand and right hand derivative we can use the formula,
$\begin{align}
& LHD=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(a-x)-f(a)}{-h} \\
& RHD=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f(a+x)-f(a)}{h} \\
\end{align}$
Using these formulas also we will get the same result.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

