
The rusting of iron takes place as follows:
$\
2{H^ \oplus } + 2{e^ - } + \dfrac{1}{2}{O_2} \to {{\text{H}}_2}{\text{O}}\left( l \right);{E^ \odot } = + 1.23V \\
F{e^{2 + }} + 2{e^ - } \to Fe\left( s \right);{E^ \odot } = - 044V \\
\ $
Calculate $\Delta {G^ \odot }$ for the net process.
A.$ - 322{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}$
B.$ - 161{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}$
C.$ - 125{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}$
D.$ - 76{\text{ kJmo}}{{\text{l}}^{{\text{ - 1}}}}$
Answer
232.8k+ views
Hint: Standard cell potential of both reactions is given. Use this formula to calculate Gibbs energy change-
$\Delta {G^ \odot } = - nF{E^ \odot }$ where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential .Then apply $\Delta G_{net}^ \odot = \Delta G_1^ \odot + \Delta G_2^ \odot $to calculate the net value.
Step-by-Step Explanation-The Given reactions are-
At Cathode:
$\
2{H^ \oplus } + 2{e^ - } + \dfrac{1}{2}{O_2} \to {{\text{H}}_2}{\text{O}}\left( l \right);{E^ \odot } = + 1.23V \\
\\
\ $
Then n=$2$ .Now using formula-
$ \Rightarrow $ $\Delta {G^ \odot } = - nF{E^ \odot }$ Where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential
On putting the given values we get,
$ \Rightarrow \Delta G_1^ \odot = - 2 \times F \times \left( {1.23} \right)$
On solving we get,
$ \Rightarrow \Delta G_1^ \odot = - 2.46F$ --- (i)
Now at Anode:
$F{e^{2 + }} + 2{e^ - } \to Fe\left( s \right);{E^ \odot } = - 044V$
Then n=$2$.Now using formula-
$ \Rightarrow $ $\Delta {G^ \odot } = - nF{E^ \odot }$ Where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential
On putting the given values we get,
$ \Rightarrow \Delta G_2^ \odot = - 2 \times F \times \left( {0.44} \right)$
On solving we get,
$ \Rightarrow \Delta G_2^ \odot = - 0.88F$ --- (ii)
Now on applying formula
$ \Rightarrow \Delta G_{net}^ \odot = \Delta G_1^ \odot + \Delta G_2^ \odot $
On putting the values from eq. (i) and (ii) in this formula we get,
$ \Rightarrow \Delta G_{net}^ \odot = \left[ { - 2.46F} \right] + \left[ { - 0.88F} \right]$
On simplifying we get,
$ \Rightarrow \Delta G_{net}^ \odot = - 3.34F$
And we know the value of Faraday constant, so on putting the value we get,
$ \Rightarrow \Delta G_{net}^ \odot = - 3.34 \times 96458$${\text{Jmo}}{{\text{l}}^{{\text{ - 1}}}}$
$ \Rightarrow \Delta G_{net}^ \odot = - 322169.72$ ${\text{Jmo}}{{\text{l}}^{{\text{ - 1}}}}$
We know that $1{\text{KJ = 1000J}}$
Then$\Delta G_{net}^ \odot = - 322169.72 \times 1000{\text{ KJmo}}{{\text{l}}^{{\text{ - 1}}}}$
\[ \Rightarrow \Delta G_{net}^ \odot = - 322.169{\text{ KJmo}}{{\text{l}}^{{\text{ - 1}}}}\]
Hence correct option is A.
Note: $\Delta {G^ \odot }$ is Gibbs energy change for a system under standard conditions while $\Delta G$ is Gibbs free energy for a system. $\Delta {G^ \odot }$ is also given as –
$ \Rightarrow \Delta {G^ \odot } = - RT\ln K$
Where $R = 8.314{\text{ Jmol}}{{\text{C}}^{ - 1}}$ is gas constant, T=Temperature and K is equilibrium constant of a reaction.
Gibbs free energy is given as-$\Delta G = \Delta H - T\Delta S$ where $\Delta H$ is change in enthalpy, $\Delta S$ is change in entropy and T is the temperature.
$\Delta {G^ \odot } = - nF{E^ \odot }$ where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential .Then apply $\Delta G_{net}^ \odot = \Delta G_1^ \odot + \Delta G_2^ \odot $to calculate the net value.
Step-by-Step Explanation-The Given reactions are-
At Cathode:
$\
2{H^ \oplus } + 2{e^ - } + \dfrac{1}{2}{O_2} \to {{\text{H}}_2}{\text{O}}\left( l \right);{E^ \odot } = + 1.23V \\
\\
\ $
Then n=$2$ .Now using formula-
$ \Rightarrow $ $\Delta {G^ \odot } = - nF{E^ \odot }$ Where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential
On putting the given values we get,
$ \Rightarrow \Delta G_1^ \odot = - 2 \times F \times \left( {1.23} \right)$
On solving we get,
$ \Rightarrow \Delta G_1^ \odot = - 2.46F$ --- (i)
Now at Anode:
$F{e^{2 + }} + 2{e^ - } \to Fe\left( s \right);{E^ \odot } = - 044V$
Then n=$2$.Now using formula-
$ \Rightarrow $ $\Delta {G^ \odot } = - nF{E^ \odot }$ Where n=moles of electrons from balanced Redox reaction, F is faraday constant whose value is $96458{\text{ C/mol}}$ and ${E^ \odot }$ is the standard cell potential
On putting the given values we get,
$ \Rightarrow \Delta G_2^ \odot = - 2 \times F \times \left( {0.44} \right)$
On solving we get,
$ \Rightarrow \Delta G_2^ \odot = - 0.88F$ --- (ii)
Now on applying formula
$ \Rightarrow \Delta G_{net}^ \odot = \Delta G_1^ \odot + \Delta G_2^ \odot $
On putting the values from eq. (i) and (ii) in this formula we get,
$ \Rightarrow \Delta G_{net}^ \odot = \left[ { - 2.46F} \right] + \left[ { - 0.88F} \right]$
On simplifying we get,
$ \Rightarrow \Delta G_{net}^ \odot = - 3.34F$
And we know the value of Faraday constant, so on putting the value we get,
$ \Rightarrow \Delta G_{net}^ \odot = - 3.34 \times 96458$${\text{Jmo}}{{\text{l}}^{{\text{ - 1}}}}$
$ \Rightarrow \Delta G_{net}^ \odot = - 322169.72$ ${\text{Jmo}}{{\text{l}}^{{\text{ - 1}}}}$
We know that $1{\text{KJ = 1000J}}$
Then$\Delta G_{net}^ \odot = - 322169.72 \times 1000{\text{ KJmo}}{{\text{l}}^{{\text{ - 1}}}}$
\[ \Rightarrow \Delta G_{net}^ \odot = - 322.169{\text{ KJmo}}{{\text{l}}^{{\text{ - 1}}}}\]
Hence correct option is A.
Note: $\Delta {G^ \odot }$ is Gibbs energy change for a system under standard conditions while $\Delta G$ is Gibbs free energy for a system. $\Delta {G^ \odot }$ is also given as –
$ \Rightarrow \Delta {G^ \odot } = - RT\ln K$
Where $R = 8.314{\text{ Jmol}}{{\text{C}}^{ - 1}}$ is gas constant, T=Temperature and K is equilibrium constant of a reaction.
Gibbs free energy is given as-$\Delta G = \Delta H - T\Delta S$ where $\Delta H$ is change in enthalpy, $\Delta S$ is change in entropy and T is the temperature.
Recently Updated Pages
Types of Solutions in Chemistry: Explained Simply

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions (2025-26)

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 4 The d and f Block Elements (2025-26)

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules (2025-26)

