
The relationship between \[{{K}_{p}}\] and \[{{K}_{c}}\] is correctly shown as:
This question has multiple correct options
(A) \[{{K}_{c}}={{K}_{p}}{{(RT)}^{\Delta n}}\]
(B) \[{{K}_{p}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
(C) \[{{K}_{c}}={{K}_{p}}{{(RT)}^{\Delta n}}\]
(D) \[{{K}_{c}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
Answer
218.1k+ views
Hint: Here we know that \[{{K}_{c}}\] and \[{{K}_{p}}\] are equilibrium constants of gaseous mixture. Here \[{{K}_{c}}\] is for molar concentration and \[{{K}_{p}}\] is for partial pressure of the gases inside a closed system.
Step by step solution:
\[{{K}_{c}}\]and \[{{K}_{p}}\] are the equilibrium constants of gaseous mixtures. Where
\[{{K}_{c}}\] is defined by molar concentration
\[{{K}_{p}}\] is defined by partial pressure.
Let’s consider a reversible reaction:
\[aA+bB\underset{{}}{\leftrightarrows}cC+dD\]
Now equilibrium constant for the reaction expressed in the terms of concentration:
\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]
If the equilibrium reaction involves gaseous species. The equilibrium constant in terms of partial pressures is:
\[{{K}_{p}}=\dfrac{{{[pC]}^{c}}{{[pD]}^{d}}}{{{[pA]}^{a}}{{[pB]}^{b}}}\]
And the ideal gas equation:
\[pV=nRT\]
By rearrangement:
\[p=\dfrac{nRT}{V}=CRT\]
So, from the ideal gas equation:
\[pA\text{ }=\text{ }\left[ A \right]\text{ }RT\],\[\text{ }pB\text{ }=\text{ }\left[ B \right]\text{ }RT\],\[\text{ }pC\text{ }=\text{ }\left[ C \right]\text{ }RT\] and \[\text{ }pD\text{ }=\text{ }\left[ D \right]\text{ }RT\]
Now we will put all these values of partial pressure in the equation of \[{{K}_{p}}\]:
\[{{K}_{p}}=\dfrac{{{(\left[ C \right]\text{ }RT)}^{c}}{{(\left[ D \right]\text{ }RT)}^{d}}}{{{(\left[ A \right]\text{ }RT)}^{a}}{{(\left[ B \right]\text{ }RT)}^{b}}}\]
By rearranging the equation and putting\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]:
\[{{K}_{p}}=\dfrac{{{\left[ C \right]}^{c}}{{\text{(}RT)}^{c}}{{\left[ D \right]}^{d}}{{(RT)}^{d}}}{{{\left[ A \right]}^{a}}{{\text{(}RT)}^{a}}{{\left[ B \right]}^{b}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}\dfrac{{{\text{(}RT)}^{c}}{{(RT)}^{d}}}{{{\text{(}RT)}^{a}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{(c+d)-(a+b)}}\]’
Let \[\Delta n=(c+d)-(a+b)\]
Then,
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
So, from the above derivation we can say that the correct relationship between \[{{K}_{p}}\] and \[{{K}_{c}}\]: \[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
And \[{{K}_{c}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
Then the correct answer is option “D”.
Note: The equilibrium constants do not include the concentrations of single components such as liquids and solid, and they do not have any units. These constants are only for ideal gases.
Step by step solution:
\[{{K}_{c}}\]and \[{{K}_{p}}\] are the equilibrium constants of gaseous mixtures. Where
\[{{K}_{c}}\] is defined by molar concentration
\[{{K}_{p}}\] is defined by partial pressure.
Let’s consider a reversible reaction:
\[aA+bB\underset{{}}{\leftrightarrows}cC+dD\]
Now equilibrium constant for the reaction expressed in the terms of concentration:
\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]
If the equilibrium reaction involves gaseous species. The equilibrium constant in terms of partial pressures is:
\[{{K}_{p}}=\dfrac{{{[pC]}^{c}}{{[pD]}^{d}}}{{{[pA]}^{a}}{{[pB]}^{b}}}\]
And the ideal gas equation:
\[pV=nRT\]
By rearrangement:
\[p=\dfrac{nRT}{V}=CRT\]
So, from the ideal gas equation:
\[pA\text{ }=\text{ }\left[ A \right]\text{ }RT\],\[\text{ }pB\text{ }=\text{ }\left[ B \right]\text{ }RT\],\[\text{ }pC\text{ }=\text{ }\left[ C \right]\text{ }RT\] and \[\text{ }pD\text{ }=\text{ }\left[ D \right]\text{ }RT\]
Now we will put all these values of partial pressure in the equation of \[{{K}_{p}}\]:
\[{{K}_{p}}=\dfrac{{{(\left[ C \right]\text{ }RT)}^{c}}{{(\left[ D \right]\text{ }RT)}^{d}}}{{{(\left[ A \right]\text{ }RT)}^{a}}{{(\left[ B \right]\text{ }RT)}^{b}}}\]
By rearranging the equation and putting\[{{K}_{c}}=\dfrac{{{[C]}^{c}}{{[D]}^{d}}}{{{[A]}^{a}}{{[B]}^{b}}}\]:
\[{{K}_{p}}=\dfrac{{{\left[ C \right]}^{c}}{{\text{(}RT)}^{c}}{{\left[ D \right]}^{d}}{{(RT)}^{d}}}{{{\left[ A \right]}^{a}}{{\text{(}RT)}^{a}}{{\left[ B \right]}^{b}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}\dfrac{{{\text{(}RT)}^{c}}{{(RT)}^{d}}}{{{\text{(}RT)}^{a}}{{\text{( }RT)}^{b}}}\]’
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{(c+d)-(a+b)}}\]’
Let \[\Delta n=(c+d)-(a+b)\]
Then,
\[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
So, from the above derivation we can say that the correct relationship between \[{{K}_{p}}\] and \[{{K}_{c}}\]: \[{{K}_{p}}={{K}_{c}}{{\text{(}RT)}^{\Delta n}}\]
And \[{{K}_{c}}={{K}_{p}}{{(RT)}^{-\Delta n}}\]
Then the correct answer is option “D”.
Note: The equilibrium constants do not include the concentrations of single components such as liquids and solid, and they do not have any units. These constants are only for ideal gases.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
NCERT Solutions For Class 11 Chemistry Chapter 7 Redox Reaction

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions ForClass 11 Chemistry Chapter Chapter 5 Thermodynamics

Thermodynamics Class 11 Chemistry Chapter 5 CBSE Notes - 2025-26

Equilibrium Class 11 Chemistry Chapter 6 CBSE Notes - 2025-26

Understanding Atomic Structure for Beginners

