
The planet Neptune travels around the sun with a period of 165 yr. What is the radius of the orbit approximately, if the orbit is considered circular?
Answer
233.1k+ views
Hint: We can recall from Kepler’s third law that the square of the period of revolution of the planets around the sun is directly proportional to the cube of their mean distance to the sun. Use the knowledge of the earth's period to get a relation.
Formula used: In this solution we will be using the following formulae;
\[{T^2} = k{R^3}\] where \[T\] is the period of the revolution of a planet around the sun, \[R\] is the mean radius of the planet to the sun.
Complete Step-by-Step solution:
To solve this question, we use the Kepler’s third law. This states that the square of the period of the revolution of all the planets about the sun is directly proportional to the cube of the mean distance between the planets and the sun. This can be mathematically given as
\[{T^2} \propto {R^3}\]
\[ \Rightarrow {T^2} = k{R^3}\] where \[T\] is the period of the revolution of a planet around the sun, \[R\] is the mean radius of the planet to the sun.
Hence, we can write by comparison between two planets, that
\[\dfrac{{{T_1}^2}}{{T_2^2}} = \dfrac{{R_1^3}}{{R_2^3}}\]
We can use any planet with a known distance and period as the second planet. We choose earth.
\[\dfrac{{{T_N}^2}}{{T_E^2}} = \dfrac{{R_N^3}}{{R_E^3}}\] where the subscript N and E stands for Neptune and Earth respectively.
For earth, the period is 1 year. Hence, write that
\[\dfrac{{{{165}^2}}}{{{1^2}}} = \dfrac{{R_N^3}}{{R_E^3}}\]
\[ \Rightarrow R_N^3 = {165^2}R_E^3\]
Hence, by finding the cube root of both sides, we have
\[{R_N} = \sqrt[3]{{{{165}^2}}}{R_E}\]
\[ \Rightarrow {R_N} = 30{R_E}\]
Radius of the earth is about \[1.50 \times {10^{11}}m\]. Hence,
\[{R_N} = 30\left( {1.50 \times {{10}^{11}}} \right) = 4.5 \times {10^{12}}m\]
Note: For understanding, note that although Kepler's law was stated with respect to the period and distance of the planet to the sun, it works for other kinds of orbital system. Any small orbiting body around a massive body will always obey the Kepler’s law including the moon and artificial satellite around the earth.
Formula used: In this solution we will be using the following formulae;
\[{T^2} = k{R^3}\] where \[T\] is the period of the revolution of a planet around the sun, \[R\] is the mean radius of the planet to the sun.
Complete Step-by-Step solution:
To solve this question, we use the Kepler’s third law. This states that the square of the period of the revolution of all the planets about the sun is directly proportional to the cube of the mean distance between the planets and the sun. This can be mathematically given as
\[{T^2} \propto {R^3}\]
\[ \Rightarrow {T^2} = k{R^3}\] where \[T\] is the period of the revolution of a planet around the sun, \[R\] is the mean radius of the planet to the sun.
Hence, we can write by comparison between two planets, that
\[\dfrac{{{T_1}^2}}{{T_2^2}} = \dfrac{{R_1^3}}{{R_2^3}}\]
We can use any planet with a known distance and period as the second planet. We choose earth.
\[\dfrac{{{T_N}^2}}{{T_E^2}} = \dfrac{{R_N^3}}{{R_E^3}}\] where the subscript N and E stands for Neptune and Earth respectively.
For earth, the period is 1 year. Hence, write that
\[\dfrac{{{{165}^2}}}{{{1^2}}} = \dfrac{{R_N^3}}{{R_E^3}}\]
\[ \Rightarrow R_N^3 = {165^2}R_E^3\]
Hence, by finding the cube root of both sides, we have
\[{R_N} = \sqrt[3]{{{{165}^2}}}{R_E}\]
\[ \Rightarrow {R_N} = 30{R_E}\]
Radius of the earth is about \[1.50 \times {10^{11}}m\]. Hence,
\[{R_N} = 30\left( {1.50 \times {{10}^{11}}} \right) = 4.5 \times {10^{12}}m\]
Note: For understanding, note that although Kepler's law was stated with respect to the period and distance of the planet to the sun, it works for other kinds of orbital system. Any small orbiting body around a massive body will always obey the Kepler’s law including the moon and artificial satellite around the earth.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

