
The line of action of a force $\overrightarrow F = \left( { - 3\hat i + \hat j + 5\hat k} \right)N$ passes through a point $\left( {7,3,1} \right)$. The moment of force $\left( {\overrightarrow \tau = \overrightarrow r \times \overrightarrow F } \right)$ about the origin is given by:
(A) $\left( {14\hat i + 38\hat j + 16\hat k} \right)$
(B) $\left( {14\hat i + 38\hat j – 16\hat k} \right)$
(C) $\left( {14\hat i - 38\hat j + 16\hat k} \right)$
(D) $\left( {14\hat i - 38\hat j - 16\hat k} \right)$
Answer
216.3k+ views
Hint: Moment of Force $\left( {\overrightarrow \tau } \right)$ is defined as the vector product of position vector $\left( {\overrightarrow r } \right)$ and Force vector $\left( {\overrightarrow F } \right)$. The $x,y,z$ coordinates of any point work as coefficients of $\hat i,\hat j,\hat k$ respectively to find the position vector of any point.
Complete step by step answer:

In the figure we can see that the force $\overrightarrow F $ is passing through point $P$ with the given coordinates. A position vector is drawn from origin $\left( O \right)$ to $P$.
The moment of Force or Torque $\left( \tau \right)$ is defined as the cross product or vector product between the position vector $\left( {\overrightarrow r } \right)$ and Force vector $\overrightarrow {\left( F \right)} $.
The vector product or cross product of two vectors is defined as a vector having magnitude equal to the product of the magnitudes of said two vectors with the sine of angle between them, and direction perpendicular to the plane containing the two vectors in accordance with right hand thumb rule.
Let’s assume that there are two vectors $\overrightarrow A $ and $\overrightarrow B $, and their cross product is $\overrightarrow C $.Then
$\Rightarrow \overrightarrow C = \overrightarrow A \times \overrightarrow B $
$\Rightarrow \overrightarrow C = AB\sin \theta \hat n$
Where the direction of $\overrightarrow C $ is given by the unit vector $\hat n$.
When the vectors are written in the form of $\hat i,\hat j,\hat k$ the cross product can be calculated as,
$\overrightarrow C = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{{A_x}}&{{A_y}}&{{A_z}} \\
{{B_x}}&{{B_y}}&{{B_z}}
\end{array}} \right|$
$\Rightarrow \overrightarrow C = \hat i\left( {{A_y}{B_z} - {A_z}{B_y}} \right) + \hat j\left( {{A_z}{B_x} - {A_x}{B_z}} \right) + \hat k\left( {{A_x}{B_y} - {A_y}{B_x}} \right)$
In the above case,
$\Rightarrow \overrightarrow \tau = \overrightarrow r \times \overrightarrow F $, where
$\Rightarrow \overrightarrow r = 7\hat i + 3\hat j + \hat k$ and
$\Rightarrow \overrightarrow F = - 3\hat i + \hat j + 5\hat k$.
Using the above formulae,
$\Rightarrow \overrightarrow \tau = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
7&3&1 \\
{ - 3}&1&5
\end{array}} \right|$
$\Rightarrow \overrightarrow \tau = \hat i\left( {3 \times 5 - 1 \times 1} \right) + \hat j\left[ {1 \times \left( { - 3} \right) - 7 \times 5} \right] + \hat k\left[ {7 \times 1 - 3 \times \left( { - 3} \right)} \right]$
$\Rightarrow \overrightarrow \tau = \hat i\left( {15 - 1} \right) + \hat j\left( { - 3 - 35} \right) + \hat k\left[ {7 - \left( { - 9} \right)} \right]$
$\overrightarrow \tau = 14\hat i - 38\hat j + 16\hat k$
Hence option C is the correct answer.
Note: Vector product of any two vectors is always a vector perpendicular to the plane containing these two vectors, that is orthogonal to both the vectors though the vector may not be orthogonal to each other. The cross product of any two vectors always produces a vector quantity whereas the scalar product or dot product of any two vectors always produces a scalar quantity.
Complete step by step answer:

In the figure we can see that the force $\overrightarrow F $ is passing through point $P$ with the given coordinates. A position vector is drawn from origin $\left( O \right)$ to $P$.
The moment of Force or Torque $\left( \tau \right)$ is defined as the cross product or vector product between the position vector $\left( {\overrightarrow r } \right)$ and Force vector $\overrightarrow {\left( F \right)} $.
The vector product or cross product of two vectors is defined as a vector having magnitude equal to the product of the magnitudes of said two vectors with the sine of angle between them, and direction perpendicular to the plane containing the two vectors in accordance with right hand thumb rule.
Let’s assume that there are two vectors $\overrightarrow A $ and $\overrightarrow B $, and their cross product is $\overrightarrow C $.Then
$\Rightarrow \overrightarrow C = \overrightarrow A \times \overrightarrow B $
$\Rightarrow \overrightarrow C = AB\sin \theta \hat n$
Where the direction of $\overrightarrow C $ is given by the unit vector $\hat n$.
When the vectors are written in the form of $\hat i,\hat j,\hat k$ the cross product can be calculated as,
$\overrightarrow C = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
{{A_x}}&{{A_y}}&{{A_z}} \\
{{B_x}}&{{B_y}}&{{B_z}}
\end{array}} \right|$
$\Rightarrow \overrightarrow C = \hat i\left( {{A_y}{B_z} - {A_z}{B_y}} \right) + \hat j\left( {{A_z}{B_x} - {A_x}{B_z}} \right) + \hat k\left( {{A_x}{B_y} - {A_y}{B_x}} \right)$
In the above case,
$\Rightarrow \overrightarrow \tau = \overrightarrow r \times \overrightarrow F $, where
$\Rightarrow \overrightarrow r = 7\hat i + 3\hat j + \hat k$ and
$\Rightarrow \overrightarrow F = - 3\hat i + \hat j + 5\hat k$.
Using the above formulae,
$\Rightarrow \overrightarrow \tau = \left| {\begin{array}{*{20}{c}}
{\hat i}&{\hat j}&{\hat k} \\
7&3&1 \\
{ - 3}&1&5
\end{array}} \right|$
$\Rightarrow \overrightarrow \tau = \hat i\left( {3 \times 5 - 1 \times 1} \right) + \hat j\left[ {1 \times \left( { - 3} \right) - 7 \times 5} \right] + \hat k\left[ {7 \times 1 - 3 \times \left( { - 3} \right)} \right]$
$\Rightarrow \overrightarrow \tau = \hat i\left( {15 - 1} \right) + \hat j\left( { - 3 - 35} \right) + \hat k\left[ {7 - \left( { - 9} \right)} \right]$
$\overrightarrow \tau = 14\hat i - 38\hat j + 16\hat k$
Hence option C is the correct answer.
Note: Vector product of any two vectors is always a vector perpendicular to the plane containing these two vectors, that is orthogonal to both the vectors though the vector may not be orthogonal to each other. The cross product of any two vectors always produces a vector quantity whereas the scalar product or dot product of any two vectors always produces a scalar quantity.
Recently Updated Pages
Circuit Switching vs Packet Switching: Key Differences Explained

Mass vs Weight: Key Differences Explained for Students

Alpha Particle Scattering and Rutherford Model Explained

Angle of Deviation in Prism: Formula, Explanation & Diagram

Angular Momentum of a Rotating Body: Definition & Formula

Apparent Frequency Explained: Formula, Uses & Examples

Trending doubts
JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Atomic Structure: Definition, Models, and Examples

Alpha, Beta, and Gamma Decay Explained for JEE & NEET

Understanding Electromagnetic Waves and Their Importance

Geostationary and Geosynchronous Satellites Explained

Inertial and Non-Inertial Frame of Reference Explained

Other Pages
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane 2025-26

NCERT Solutions For Class 11 Physics Chapter 4 Laws Of Motion

Clemmensen and Wolff Kishner Reductions Explained for JEE & NEET

JEE Main 2023 January 29th Shift 2 Physics Question Paper with Answer Keys and Solutions

Current Loop as a Magnetic Dipole: Concept, Derivation, and Examples

Motion In A Plane Class 11 Physics Chapter 3 CBSE Notes - 2025-26

