The differential equation obtained by eliminating A and B from $y = A\cos \omega t + B\sin \omega t$ is
$
(a){\text{ y'' + y' = 0}} \\
(b){\text{ y'' + }}{\omega ^2}{\text{y = 0}} \\
(c){\text{ y'' = }}{\omega ^2}{\text{y}} \\
(d){\text{ y'' + y = 0}} \\
$
Answer
Verified
505.8k+ views
Hint: In this question we have been given an equation and we need to obtain the differential equation that will be obtained by eliminating A and B. Now we have to eliminate two variables so we have to differentiate this equation twice. Use this concept to get the answer.
Complete step-by-step answer:
Given equation is
$y = A\cos \omega t + B\sin \omega t$…………………. (1)
Now differentiate this equation w.r.t. t then we have,
$\dfrac{{dy}}{{dt}} = y' = A\dfrac{d}{{dt}}\left( {\cos \omega t} \right) + B\dfrac{d}{{dt}}\left( {\sin \omega t} \right)$
Now apply the differentiation of cosine and sine we have,
$ \Rightarrow y' = A\left( { - \sin \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right) + B\left( {\cos \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right)$
And we all know differentiation of $\omega t$ w.r.t. t is $\omega $.
$ \Rightarrow y' = A\left( { - \omega \sin \omega t} \right) + B\left( {\omega \cos \omega t} \right)$
$ \Rightarrow y' = - A\omega \sin \omega t + B\omega \cos \omega t$
Now again differentiate this equation w.r.t. t we have,
$ \Rightarrow \dfrac{d}{{dt}}y' = y'' = - A\omega \left( {\dfrac{d}{{dt}}\sin \omega t} \right) + B\omega \left( {\dfrac{d}{{dt}}\cos \omega t} \right)$
Now again apply the differentiation of cosine and sine we have,
$ \Rightarrow y'' = - A\omega \left( {\cos \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right) + B\omega \left( { - \sin \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right)$
$ \Rightarrow y'' = - A\omega \left( {\omega \cos \omega t} \right) + B\omega \left( { - \omega \sin \omega t} \right)$
Now simplify this equation we have,
$ \Rightarrow y'' = - A{\omega ^2}\cos \omega t - B{\omega ^2}\sin \omega t$
$ \Rightarrow y'' = - {\omega ^2}\left( {A\cos \omega t + B\sin \omega t} \right)$
Now from equation (1) we have,
$ \Rightarrow y'' = - {\omega ^2}y$
$ \Rightarrow y'' + {\omega ^2}y = 0$
So, this is the required differential equation.
Hence option (b) is correct.
Note: Whenever we face such types of problems the key concept is to know that the total number of variables that has to be eliminated is the number of times we have to differentiate that given equation. Differentiation and simplification alongside will get you the required differential equation.
Complete step-by-step answer:
Given equation is
$y = A\cos \omega t + B\sin \omega t$…………………. (1)
Now differentiate this equation w.r.t. t then we have,
$\dfrac{{dy}}{{dt}} = y' = A\dfrac{d}{{dt}}\left( {\cos \omega t} \right) + B\dfrac{d}{{dt}}\left( {\sin \omega t} \right)$
Now apply the differentiation of cosine and sine we have,
$ \Rightarrow y' = A\left( { - \sin \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right) + B\left( {\cos \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right)$
And we all know differentiation of $\omega t$ w.r.t. t is $\omega $.
$ \Rightarrow y' = A\left( { - \omega \sin \omega t} \right) + B\left( {\omega \cos \omega t} \right)$
$ \Rightarrow y' = - A\omega \sin \omega t + B\omega \cos \omega t$
Now again differentiate this equation w.r.t. t we have,
$ \Rightarrow \dfrac{d}{{dt}}y' = y'' = - A\omega \left( {\dfrac{d}{{dt}}\sin \omega t} \right) + B\omega \left( {\dfrac{d}{{dt}}\cos \omega t} \right)$
Now again apply the differentiation of cosine and sine we have,
$ \Rightarrow y'' = - A\omega \left( {\cos \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right) + B\omega \left( { - \sin \omega t\dfrac{d}{{dt}}\left( {\omega t} \right)} \right)$
$ \Rightarrow y'' = - A\omega \left( {\omega \cos \omega t} \right) + B\omega \left( { - \omega \sin \omega t} \right)$
Now simplify this equation we have,
$ \Rightarrow y'' = - A{\omega ^2}\cos \omega t - B{\omega ^2}\sin \omega t$
$ \Rightarrow y'' = - {\omega ^2}\left( {A\cos \omega t + B\sin \omega t} \right)$
Now from equation (1) we have,
$ \Rightarrow y'' = - {\omega ^2}y$
$ \Rightarrow y'' + {\omega ^2}y = 0$
So, this is the required differential equation.
Hence option (b) is correct.
Note: Whenever we face such types of problems the key concept is to know that the total number of variables that has to be eliminated is the number of times we have to differentiate that given equation. Differentiation and simplification alongside will get you the required differential equation.
Recently Updated Pages
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Physics: Engaging Questions & Answers for Success
Master Class 12 Maths: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Trending doubts
Explain sex determination in humans with the help of class 12 biology CBSE
Give 10 examples of unisexual and bisexual flowers
How do you convert from joules to electron volts class 12 physics CBSE
Differentiate between internal fertilization and external class 12 biology CBSE
On what factors does the internal resistance of a cell class 12 physics CBSE
A 24 volt battery of internal resistance 4 ohm is connected class 12 physics CBSE