
The depletion of ozone involves the following steps:
Step 1: ${{O}_{3}}\underset{k_1}{\overset{k_2}{\mathop{\rightleftharpoons }}}\,{{O}_{2}}+O$ (fast)
Step 2: \[{{O}_{3}}+O\underset{k}{\mathop{\to }}\,2{{O}_{2}}\](slow)
The predicted order of reaction will be:
Answer
232.5k+ views
Hint: The order of reaction can be defined as the power dependence of rate on the concentration of all reactants in the slowest step. Let’s consider, for example, the rate of a first-order reaction is dependent solely on the concentration of one species in the reaction.
Complete Step by step solution:
${{O}_{3}}\underset{k_1}{\overset{k_2}{\mathop{\rightleftharpoons }}}\,{{O}_{2}}+O$ Equation (1)
\[{{O}_{3}}+O\underset{k}{\mathop{\to }}\,2{{O}_{2}}\] Equation (2)
\[Rate=k[{{O}_{3}}][O]\] Equation (3)
\[k_1\] and \[k_2\] are rate constants for equation (1),
\[k_1[{{O}_{3}}]=k_2[{{O}_{2}}][O]\]
\[[O]=\dfrac{k_1}{k_2}\dfrac{[{{O}_{3}}]}{[{{O}_{2}}]}\]
Putting the value of [O] in Equation (3)
\[\begin{array}{*{35}{l}}
Rate=\dfrac{k_1}{k_2}\dfrac{[{{O}_{3}}]}{[{{O}_{2}}]}k[{{O}_{3}}] \\
Rate=\dfrac{k_1k}{k_2}\dfrac{{{[{{O}_{3}}]}^{2}}}{[{{O}_{2}}]} \\
\end{array}\]
Consider \[\dfrac{k_1k}{k_2}\]as a constant hence,
\[Rate\propto {{[{{O}_{3}}]}^{2}}{{[{{O}_{2}}]}^{-1}}\]
Order of reaction = 2-1=1
Additional Information:
Zero: A zero-order indicates that the concentration of that species does not affect the rate of a reaction
Negative integer order: A negative order indicates that the concentration of that species inversely affects the rate of a reaction
Positive integer order: A positive order indicates that the concentration of that species directly affects the rate of a reaction
Non-Integer: Non-integer orders, both positive and negative, represent more intricate relationships between concentrations and rate in more complex reactions.
Note: The order of reaction refers to the power dependence of the rate on the concentration of each reactant. The order of reaction is an experimentally determined parameter and can take on a fractional value. This is distinct from the molecularity (or stoichiometry) of the reaction which is the theoretical integer value of the number of molecules involved in the reaction.
Complete Step by step solution:
${{O}_{3}}\underset{k_1}{\overset{k_2}{\mathop{\rightleftharpoons }}}\,{{O}_{2}}+O$ Equation (1)
\[{{O}_{3}}+O\underset{k}{\mathop{\to }}\,2{{O}_{2}}\] Equation (2)
\[Rate=k[{{O}_{3}}][O]\] Equation (3)
\[k_1\] and \[k_2\] are rate constants for equation (1),
\[k_1[{{O}_{3}}]=k_2[{{O}_{2}}][O]\]
\[[O]=\dfrac{k_1}{k_2}\dfrac{[{{O}_{3}}]}{[{{O}_{2}}]}\]
Putting the value of [O] in Equation (3)
\[\begin{array}{*{35}{l}}
Rate=\dfrac{k_1}{k_2}\dfrac{[{{O}_{3}}]}{[{{O}_{2}}]}k[{{O}_{3}}] \\
Rate=\dfrac{k_1k}{k_2}\dfrac{{{[{{O}_{3}}]}^{2}}}{[{{O}_{2}}]} \\
\end{array}\]
Consider \[\dfrac{k_1k}{k_2}\]as a constant hence,
\[Rate\propto {{[{{O}_{3}}]}^{2}}{{[{{O}_{2}}]}^{-1}}\]
Order of reaction = 2-1=1
Additional Information:
Zero: A zero-order indicates that the concentration of that species does not affect the rate of a reaction
Negative integer order: A negative order indicates that the concentration of that species inversely affects the rate of a reaction
Positive integer order: A positive order indicates that the concentration of that species directly affects the rate of a reaction
Non-Integer: Non-integer orders, both positive and negative, represent more intricate relationships between concentrations and rate in more complex reactions.
Note: The order of reaction refers to the power dependence of the rate on the concentration of each reactant. The order of reaction is an experimentally determined parameter and can take on a fractional value. This is distinct from the molecularity (or stoichiometry) of the reaction which is the theoretical integer value of the number of molecules involved in the reaction.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 12 Chemistry Chapter 1 Solutions (2025-26)

Solutions Class 12 Chemistry Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 4 The d and f Block Elements (2025-26)

Biomolecules Class 12 Chemistry Chapter 10 CBSE Notes - 2025-26

NCERT Solutions For Class 12 Chemistry Chapter 10 Biomolecules (2025-26)

