The density of ice is $917{\text{ kg/}}{{\text{m}}^3}$ . What will be the fraction of the volume of a piece of ice above water when it is floating in freshwater?
A. $0.083$
B. $0.042$
C. $0.412$
D. $0.813$
Answer
288.6k+ views
Hint: When a body is partially or completely immersed in a fluid, a force acts on it in the upward direction which is called force of buoyancy or buoyant force. It is given by ${F_B} = \sigma \times V \times g$ where $\sigma $ is the density of the body, $V$ is the volume of the body in consideration and $g$ is the acceleration due to gravity.
Due to this buoyant force, the body loses some of its weight which is equal to the weight of the fluid displaced by the immersed part of the body.
Complete step by step answer
As given in the question, the ice is partially immersed in water.
We know that when a body is partially or completely immersed in a fluid, a force acts on it in the upward direction which is called force of buoyancy or buoyant force. It is given by ${F_B} = \sigma \times V \times g$ where $\sigma $ is the density of the body, $V$ is the volume of the body in consideration and $g$ is the acceleration due to gravity.
And according to the Archimedes’ Principle, due to this buoyant force, the body loses some of its weight which is equal to the weight of the fluid displaced by the immersed part of the body.
Let $f$ be the fraction of volume of the ice that is inside the water. Then $\left( {1 - f} \right)$ will be the fraction of volume above water. We know that the density of water $\rho = 1000{\text{ kg/}}{{\text{m}}^3}$ and the density of ice is given $\sigma = 917{\text{ kg/}}{{\text{m}}^3}$ . Now, we apply Archimedes’ Principle to find the answer i.e.
${\text{Buoyant Force }} = {\text{ Displaced weight of water}}$
$\sigma \times \left( {1 - f} \right) \times V \times g = \rho \times f \times V \times g$
On substituting the value and simplifying we have
\[917 \times \left( {1 - f} \right) = 1000 \times f\]
On further solving we have
$f = 0.917$
Therefore, the fraction of volume of the ice above water is $\left( {1 - f} \right) = 1 - 0.917 = 0.083$
Hence, option A is correct.
Note: The Archimedes’ Principle has numerous important applications in our life. It is used in designing the ships, boats and other water bodies. They are also used in producing Hydrometers which are used to measure density of different liquids.
Due to this buoyant force, the body loses some of its weight which is equal to the weight of the fluid displaced by the immersed part of the body.
Complete step by step answer
As given in the question, the ice is partially immersed in water.
We know that when a body is partially or completely immersed in a fluid, a force acts on it in the upward direction which is called force of buoyancy or buoyant force. It is given by ${F_B} = \sigma \times V \times g$ where $\sigma $ is the density of the body, $V$ is the volume of the body in consideration and $g$ is the acceleration due to gravity.
And according to the Archimedes’ Principle, due to this buoyant force, the body loses some of its weight which is equal to the weight of the fluid displaced by the immersed part of the body.
Let $f$ be the fraction of volume of the ice that is inside the water. Then $\left( {1 - f} \right)$ will be the fraction of volume above water. We know that the density of water $\rho = 1000{\text{ kg/}}{{\text{m}}^3}$ and the density of ice is given $\sigma = 917{\text{ kg/}}{{\text{m}}^3}$ . Now, we apply Archimedes’ Principle to find the answer i.e.
${\text{Buoyant Force }} = {\text{ Displaced weight of water}}$
$\sigma \times \left( {1 - f} \right) \times V \times g = \rho \times f \times V \times g$
On substituting the value and simplifying we have
\[917 \times \left( {1 - f} \right) = 1000 \times f\]
On further solving we have
$f = 0.917$
Therefore, the fraction of volume of the ice above water is $\left( {1 - f} \right) = 1 - 0.917 = 0.083$
Hence, option A is correct.
Note: The Archimedes’ Principle has numerous important applications in our life. It is used in designing the ships, boats and other water bodies. They are also used in producing Hydrometers which are used to measure density of different liquids.
Last updated date: 30th May 2023
•
Total views: 288.6k
•
Views today: 6.46k
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Ray optics is valid when characteristic dimensions class 12 physics CBSE

Name the Largest and the Smallest Cell in the Human Body ?

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

A ball impinges directly on a similar ball at rest class 11 physics CBSE

Lysosomes are known as suicidal bags of cell why class 11 biology CBSE

How do you define least count for Vernier Calipers class 12 physics CBSE

Two balls are dropped from different heights at different class 11 physics CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main
