
The component of vector $2i + 3j + 2k$ perpendicular to $i + j + k$ is:
A) $\dfrac{5}{3}\left( {i - 2j + k} \right)$
B) $\dfrac{1}{3}\left( {5i + j - 2k} \right)$
C) $\dfrac{{\left( {7i - 10j + 7k} \right)}}{3}$
D) $\dfrac{{5i - 8j + 5k}}{3}$
Answer
213.6k+ views
Hint: A vector quantity is such a quantity that has both magnitude as well as direction as opposed to a scalar quantity which only has a magnitude. For performing calculations with vector quantities a separate branch of mathematics known as vector algebra was formed. Vector algebra deals with the algebraic operations like addition, subtraction, multiplication etc. of vector quantities.
Complete step by step answer:
Letus consider that we have been provided with two vectors a and b such that,
$\vec a = 2i + 3j + 2k$
$\vec b = \;i + {\text{j}} + {\text{k}}$
We know that the component of vector a perpendicular to vector b can be obtained by the following expression.
$\vec c = \vec a - \dfrac{{\vec a \cdot \vec b}}{{{{\left| {\vec b} \right|}^2}}} \times \vec b$ …….(1)
Where, vector c is the component of vector a perpendicular to the vector b.
The magnitude of vector a is,
$\left| {\vec a} \right| = \sqrt {{2^2} + {3^2} + {2^2}} = \sqrt {17} $
The magnitude of vector b is,
$\left| {\vec b} \right| = \sqrt {{1^2} + {1^2} + {1^2}} = \sqrt 3 $.....(2)
The scalar or dot product of vectors a & b is given by,
$\vec a \cdot \vec b = 2(1) - 3(1) + 2(1) = 1$......(3)
Now, putting all the values from equations (2) & (3) in equation (1) we get,
$\vec c = 2i + 3j + 2k - \dfrac{1}{{{{\left( {\sqrt 3 } \right)}^2}}} \times \left( {i + {\text{j}} + {\text{k}}} \right)$
$\vec c = \dfrac{5}{3}\left( {i - 2j + k} \right)$
i.e. $\dfrac{5}{3}\left( {i - 2j + k} \right)$ is the vector which is the component of vector a and also perpendicular to vector b.
Hence option (A) is the correct answer option.
Note: For a vector quantity q $\vec q = ai + bj + ck$ a, b and c are the magnitudes of the quantity along x, y and z directions respectively. i is the unit vector along x - direction, j is the unit vector along y - direction, k is the unit vector along z - direction. So if a ${\vec q}$ is a force vector and it is given in Newton, then it means that a Newton of force is applied in x - direction, b Newton Of force is applied in y - direction and c Newton of force is acting in y - direction.
Complete step by step answer:
Letus consider that we have been provided with two vectors a and b such that,
$\vec a = 2i + 3j + 2k$
$\vec b = \;i + {\text{j}} + {\text{k}}$
We know that the component of vector a perpendicular to vector b can be obtained by the following expression.
$\vec c = \vec a - \dfrac{{\vec a \cdot \vec b}}{{{{\left| {\vec b} \right|}^2}}} \times \vec b$ …….(1)
Where, vector c is the component of vector a perpendicular to the vector b.
The magnitude of vector a is,
$\left| {\vec a} \right| = \sqrt {{2^2} + {3^2} + {2^2}} = \sqrt {17} $
The magnitude of vector b is,
$\left| {\vec b} \right| = \sqrt {{1^2} + {1^2} + {1^2}} = \sqrt 3 $.....(2)
The scalar or dot product of vectors a & b is given by,
$\vec a \cdot \vec b = 2(1) - 3(1) + 2(1) = 1$......(3)
Now, putting all the values from equations (2) & (3) in equation (1) we get,
$\vec c = 2i + 3j + 2k - \dfrac{1}{{{{\left( {\sqrt 3 } \right)}^2}}} \times \left( {i + {\text{j}} + {\text{k}}} \right)$
$\vec c = \dfrac{5}{3}\left( {i - 2j + k} \right)$
i.e. $\dfrac{5}{3}\left( {i - 2j + k} \right)$ is the vector which is the component of vector a and also perpendicular to vector b.
Hence option (A) is the correct answer option.
Note: For a vector quantity q $\vec q = ai + bj + ck$ a, b and c are the magnitudes of the quantity along x, y and z directions respectively. i is the unit vector along x - direction, j is the unit vector along y - direction, k is the unit vector along z - direction. So if a ${\vec q}$ is a force vector and it is given in Newton, then it means that a Newton of force is applied in x - direction, b Newton Of force is applied in y - direction and c Newton of force is acting in y - direction.
Recently Updated Pages
Chemical Equation - Important Concepts and Tips for JEE

JEE Main 2022 (July 29th Shift 1) Chemistry Question Paper with Answer Key

Conduction, Transfer of Energy Important Concepts and Tips for JEE

JEE Analytical Method of Vector Addition Important Concepts and Tips

Atomic Size - Important Concepts and Tips for JEE

JEE Main 2022 (June 29th Shift 1) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

JEE Main Correction Window 2026 Session 1 Dates Announced - Edit Form Details, Dates and Link

Equation of Trajectory in Projectile Motion: Derivation & Proof

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Hybridisation in Chemistry – Concept, Types & Applications

Angle of Deviation in a Prism – Formula, Diagram & Applications

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Collision: Meaning, Types & Examples in Physics

