What is the reverse gradient operation ?
Answer
Verified
400.8k+ views
Hint:The gradient of a scalar function $f$ is a vector field, denoted by $\nabla f$ where $\nabla $(nabla) denotes the vector differential operator which collects all the partial derivatives of the function $f$ in the form of vector. The reverse gradient operator when operated on a vector field gives scalar quantity.
Complete step by step answer:
Gradient operation converts a scalar function into a vector field whereas the reverse gradient operation converts a vector field into a scalar field. The reverse operation of differentiation is integration. In the same way the gradient is obtained by differentiating the function in all directions then the reverse gradient operation is the integration of the vector to get back the scalar function. For example consider the scalar function $f(x,y) = {x^3} - 3x{y^2} + {x^2} + {y^2} + \log x$ , on applying gradient function we get ,
$\nabla f = \dfrac{{\partial f}}{{\partial x}}\mathop i\limits^ \wedge+\dfrac{{\partial f}}{{\partial y}}\mathop j\limits^ \wedge $
$\Rightarrow \nabla f = \left( {3{x^2} - 3{y^2} + 2x + \dfrac{1}{x}} \right)\mathop i\limits^ \wedge + (2y - 6xy)\mathop j\limits^ \wedge $
To reverse this, we take the integration on $\nabla f$,
\[f(x,y) = \int {\dfrac{{\partial f}}{{\partial x}}dx} \]
\[\Rightarrow f(x,y) = \int {(3{x^2} - 3{y^2} + 2x + \dfrac{1}{x})dx} \]
\[\Rightarrow f(x,y) = {x^3} - 3x{y^2} + {x^2} + \log x + u(y) \\ \]
Where $u(y)$ is the constant of integration and it is the function of $y$, because when we differentiate $f(x,y)$ with respect to $x$ partially the terms of $f(x,y)$ not containing $x$ is constant this includes the terms containing only $y$.
Now to determine $u(y)$, we integrate $\dfrac{{\partial f}}{{\partial y}}$ with respect to $y$. Then some of the terms after integration will become common, the terms which are not common are those which contain only $y$ terms. Here \[\dfrac{{\partial f}}{{\partial y}} = 2y - 6xy\], and the only term not containing $x$ is $2y$ therefore:
$u(y) = \int {2y} dy = {y^2} + c$
Thus, $f(x,y) = {x^3} - 3x{y^2} + {x^2} + \log x + {y^2} + c \\ $
In general the reverse gradient is given by,
\[f(x,y) = \int {\dfrac{{\partial f}}{{\partial x}}dx} + \int [ {\text{terms of }}\dfrac{{\partial f}}{{\partial y}}{\text{ that do not contain }}x]dy\]
Note: Gradient operation converts a scalar function into a vector field whereas the reverse gradient operation converts a vector field into a scalar field. The gradient operator is of greater importance as it essentially tells how much a surface or some quantity changes from one point in space or time to another.
Complete step by step answer:
Gradient operation converts a scalar function into a vector field whereas the reverse gradient operation converts a vector field into a scalar field. The reverse operation of differentiation is integration. In the same way the gradient is obtained by differentiating the function in all directions then the reverse gradient operation is the integration of the vector to get back the scalar function. For example consider the scalar function $f(x,y) = {x^3} - 3x{y^2} + {x^2} + {y^2} + \log x$ , on applying gradient function we get ,
$\nabla f = \dfrac{{\partial f}}{{\partial x}}\mathop i\limits^ \wedge+\dfrac{{\partial f}}{{\partial y}}\mathop j\limits^ \wedge $
$\Rightarrow \nabla f = \left( {3{x^2} - 3{y^2} + 2x + \dfrac{1}{x}} \right)\mathop i\limits^ \wedge + (2y - 6xy)\mathop j\limits^ \wedge $
To reverse this, we take the integration on $\nabla f$,
\[f(x,y) = \int {\dfrac{{\partial f}}{{\partial x}}dx} \]
\[\Rightarrow f(x,y) = \int {(3{x^2} - 3{y^2} + 2x + \dfrac{1}{x})dx} \]
\[\Rightarrow f(x,y) = {x^3} - 3x{y^2} + {x^2} + \log x + u(y) \\ \]
Where $u(y)$ is the constant of integration and it is the function of $y$, because when we differentiate $f(x,y)$ with respect to $x$ partially the terms of $f(x,y)$ not containing $x$ is constant this includes the terms containing only $y$.
Now to determine $u(y)$, we integrate $\dfrac{{\partial f}}{{\partial y}}$ with respect to $y$. Then some of the terms after integration will become common, the terms which are not common are those which contain only $y$ terms. Here \[\dfrac{{\partial f}}{{\partial y}} = 2y - 6xy\], and the only term not containing $x$ is $2y$ therefore:
$u(y) = \int {2y} dy = {y^2} + c$
Thus, $f(x,y) = {x^3} - 3x{y^2} + {x^2} + \log x + {y^2} + c \\ $
In general the reverse gradient is given by,
\[f(x,y) = \int {\dfrac{{\partial f}}{{\partial x}}dx} + \int [ {\text{terms of }}\dfrac{{\partial f}}{{\partial y}}{\text{ that do not contain }}x]dy\]
Note: Gradient operation converts a scalar function into a vector field whereas the reverse gradient operation converts a vector field into a scalar field. The gradient operator is of greater importance as it essentially tells how much a surface or some quantity changes from one point in space or time to another.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Master Class 12 Economics: Engaging Questions & Answers for Success
Trending doubts
What are the major means of transport Explain each class 12 social science CBSE
What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?
Explain sex determination in humans with the help of class 12 biology CBSE
Explain with a neat labelled diagram the TS of mammalian class 12 biology CBSE
Distinguish between asexual and sexual reproduction class 12 biology CBSE
Explain Mendels Monohybrid Cross Give an example class 12 biology CBSE