
What is the period of small oscillations of the block of mass m, if the springs are ideal and pulleys are massless?
A) $\dfrac{{{\pi }}}{{{2}}}\sqrt {\dfrac{{{m}}}{{{k}}}} $
B) $\dfrac{{{\pi }}}{{{2}}}\sqrt {\dfrac{{{m}}}{{{{2k}}}}} $
C) $\dfrac{{{\pi }}}{{{2}}}\sqrt {\dfrac{{{{2m}}}}{{{k}}}} $
D) ${{\pi }}\sqrt {\dfrac{{{m}}}{{{k}}}} $
Answer
233.1k+ views
Hint: First find the spring constant and then by using the equation that gives the time period of oscillation of a spring in relation to mass of the body and the spring constant find the weight of the body. Here first we will draw the free body diagram of the given system as shown below. And then after balancing the force as discussed below.
Complete step by step solution:
Free body diagram of given pulley-block system as shown in below figure.

$ \Rightarrow $ $2T$ = $mg$
By using Hooke's law for a spring balance.
$ \Rightarrow $ $mg$ =${{4k}}{{{x}}_{{0}}}$ ………….. (1)
$ \Rightarrow $ $\dfrac{{{T}}}{{{2}}} = {{k}}{{{x}}_{{0}}}$
$ \Rightarrow $ ${{T = 2k}}{{{x}}_{{0}}}$
If displaced
$ \Rightarrow$ $mg−2T$ = $ma$
$ \Rightarrow $ $mg−4k({x_0} + x)$ = $ma$
$ \Rightarrow $ $\dfrac{{{T}}}{{{2}}}$= $k({x_0}+x)$
$ \Rightarrow $ $T$ = $2k({x_0}+x)$
Now,
From equation (1), we will get
$ \Rightarrow $ $mg$ =${{4k}}{{{x}}_{{0}}}$
$ \Rightarrow $ ${{{x}}_{{0}}}{{ = }}\dfrac{{{{mg}}}}{{{{4k}}}}$
As we know,
$ \Rightarrow $${{\omega = }}\sqrt {\dfrac{{{g}}}{{{{{x}}_{{0}}}}}} $
Put ${{{x}}_{{0}}}{{ = }}\dfrac{{{{mg}}}}{{{{4k}}}}$and get
$ \Rightarrow $${{\omega = }}\sqrt {\dfrac{{{g}}}{{\dfrac{{{{mg}}}}{{{{4k}}}}}}} $
$ \Rightarrow $${{\omega = }}\sqrt {\dfrac{{{{4k}}}}{{{m}}}} $
Now, by using the formula of time period as ${{T = }}\dfrac{{{{2\pi }}}}{{{\omega }}}$
Put the value of ${{\omega = }}\sqrt {\dfrac{{{{4k}}}}{{{m}}}} $and we will get
$ \Rightarrow $${{T = 2\pi }}\sqrt {\dfrac{{{m}}}{{{{4k}}}}} $
$ \therefore $${{T = \pi }}\sqrt {\dfrac{{{m}}}{{{k}}}} $
Thus, ${{T = \pi }}\sqrt {\dfrac{{{m}}}{{{k}}}} $ is the period of small oscillations of the block of mass m.
Therefore, option (D) is the correct option.
Note: Mathematically, Hooke's law for a spring balance can be written down as:
F= -kx
Where F is the restoring force,
k is the spring constant of the spring balance and
x is the displacement from the initial position of the spring balance system.
This formula is extremely useful in other chapters also like Simple Harmonic Chapter, Newton's Laws of Motion, etc.
Complete step by step solution:
Free body diagram of given pulley-block system as shown in below figure.

$ \Rightarrow $ $2T$ = $mg$
By using Hooke's law for a spring balance.
$ \Rightarrow $ $mg$ =${{4k}}{{{x}}_{{0}}}$ ………….. (1)
$ \Rightarrow $ $\dfrac{{{T}}}{{{2}}} = {{k}}{{{x}}_{{0}}}$
$ \Rightarrow $ ${{T = 2k}}{{{x}}_{{0}}}$
If displaced
$ \Rightarrow$ $mg−2T$ = $ma$
$ \Rightarrow $ $mg−4k({x_0} + x)$ = $ma$
$ \Rightarrow $ $\dfrac{{{T}}}{{{2}}}$= $k({x_0}+x)$
$ \Rightarrow $ $T$ = $2k({x_0}+x)$
Now,
From equation (1), we will get
$ \Rightarrow $ $mg$ =${{4k}}{{{x}}_{{0}}}$
$ \Rightarrow $ ${{{x}}_{{0}}}{{ = }}\dfrac{{{{mg}}}}{{{{4k}}}}$
As we know,
$ \Rightarrow $${{\omega = }}\sqrt {\dfrac{{{g}}}{{{{{x}}_{{0}}}}}} $
Put ${{{x}}_{{0}}}{{ = }}\dfrac{{{{mg}}}}{{{{4k}}}}$and get
$ \Rightarrow $${{\omega = }}\sqrt {\dfrac{{{g}}}{{\dfrac{{{{mg}}}}{{{{4k}}}}}}} $
$ \Rightarrow $${{\omega = }}\sqrt {\dfrac{{{{4k}}}}{{{m}}}} $
Now, by using the formula of time period as ${{T = }}\dfrac{{{{2\pi }}}}{{{\omega }}}$
Put the value of ${{\omega = }}\sqrt {\dfrac{{{{4k}}}}{{{m}}}} $and we will get
$ \Rightarrow $${{T = 2\pi }}\sqrt {\dfrac{{{m}}}{{{{4k}}}}} $
$ \therefore $${{T = \pi }}\sqrt {\dfrac{{{m}}}{{{k}}}} $
Thus, ${{T = \pi }}\sqrt {\dfrac{{{m}}}{{{k}}}} $ is the period of small oscillations of the block of mass m.
Therefore, option (D) is the correct option.
Note: Mathematically, Hooke's law for a spring balance can be written down as:
F= -kx
Where F is the restoring force,
k is the spring constant of the spring balance and
x is the displacement from the initial position of the spring balance system.
This formula is extremely useful in other chapters also like Simple Harmonic Chapter, Newton's Laws of Motion, etc.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

