
Moment about the point $\overrightarrow i + 2\overrightarrow j - \overrightarrow k $of a force represented by $\overrightarrow i + 2\overrightarrow j + \overrightarrow k $ acting through the point $2\overrightarrow i + 3\overrightarrow j + \overrightarrow k $ is
(A) $3\overrightarrow i + \overrightarrow j - \overrightarrow k $
(B) $3\overrightarrow i - \overrightarrow j + \overrightarrow k $
(C) $ - 3\overrightarrow i + \overrightarrow j + \overrightarrow k $
(D) $3\overrightarrow i + \overrightarrow j + \overrightarrow k $
Answer
218.7k+ views
Hint: When a force is applied on a point lying on a line passing through another point then the force produces a torque on another point which lies on the line passing through the point of application of force. This torque is also known as the moment.
Formula used
$\overrightarrow \tau = \overrightarrow r \times \overrightarrow F $
$\overrightarrow \tau $ is the torque(moment of force)s, $\overrightarrow r $is distance vector, $\overrightarrow F $ is the force vector.
Complete Step-by-step solution
$\overrightarrow r $is the distance vector which is the difference of position vector of the points which represent the point of application of force and the point of reference.
$ \Rightarrow \overrightarrow r = (2\overrightarrow i + 3\overrightarrow j + \overrightarrow k ) - (\overrightarrow i + 2\overrightarrow j - \overrightarrow k )$
$ \Rightarrow \overrightarrow r = \overrightarrow i + \overrightarrow j + 2\overrightarrow k $
Given,
$ \Rightarrow \overrightarrow F = \overrightarrow i + 2\overrightarrow j + \overrightarrow k $
$\overrightarrow F $ is the force vector.
We know that,
$ \Rightarrow \overrightarrow \tau = \overrightarrow r \times \overrightarrow F $
$\overrightarrow \tau $ is the torque vector.
\[ \Rightarrow \overrightarrow \tau = (\overrightarrow i + \overrightarrow j + 2\overrightarrow k ) \times (\overrightarrow i + 2\overrightarrow j + \overrightarrow k )\]
$ \Rightarrow \overrightarrow \tau = - 3\overrightarrow i + \overrightarrow j + \overrightarrow k $
Hence the correct answer is (C) $ - 3\overrightarrow i + \overrightarrow j + \overrightarrow k $.
Additional information
For a force to produce torque(moment of force) then force must not be parallel to the distance vector and should not be parallel to the axis about which the body is going to rotate.
The ease with which a body will rotate after applying torque(moment of force) is called the moment of inertia of that body along a given axis.
In the above calculation, we wrote $\overrightarrow \tau = \overrightarrow r \times \overrightarrow F $ which means that the torque(moment of force) vector is the vector obtained through the cross product/vector product of $\overrightarrow r $ and $\overrightarrow F $.
$\overrightarrow \tau $ is the counterpart of $\overrightarrow F $ i.e. the significance of $\overrightarrow F $ in translation motion is similar to that of $\overrightarrow \tau $in rotational motion.
Note:
Torque(moment of force) is the amount of force that can cause an object to rotate about an axis. Just as force is what causes an object to accelerate in linear kinematics, torque causes an object to gain an angular acceleration. Torque is a vector quantity.
Formula used
$\overrightarrow \tau = \overrightarrow r \times \overrightarrow F $
$\overrightarrow \tau $ is the torque(moment of force)s, $\overrightarrow r $is distance vector, $\overrightarrow F $ is the force vector.
Complete Step-by-step solution
$\overrightarrow r $is the distance vector which is the difference of position vector of the points which represent the point of application of force and the point of reference.
$ \Rightarrow \overrightarrow r = (2\overrightarrow i + 3\overrightarrow j + \overrightarrow k ) - (\overrightarrow i + 2\overrightarrow j - \overrightarrow k )$
$ \Rightarrow \overrightarrow r = \overrightarrow i + \overrightarrow j + 2\overrightarrow k $
Given,
$ \Rightarrow \overrightarrow F = \overrightarrow i + 2\overrightarrow j + \overrightarrow k $
$\overrightarrow F $ is the force vector.
We know that,
$ \Rightarrow \overrightarrow \tau = \overrightarrow r \times \overrightarrow F $
$\overrightarrow \tau $ is the torque vector.
\[ \Rightarrow \overrightarrow \tau = (\overrightarrow i + \overrightarrow j + 2\overrightarrow k ) \times (\overrightarrow i + 2\overrightarrow j + \overrightarrow k )\]
$ \Rightarrow \overrightarrow \tau = - 3\overrightarrow i + \overrightarrow j + \overrightarrow k $
Hence the correct answer is (C) $ - 3\overrightarrow i + \overrightarrow j + \overrightarrow k $.
Additional information
For a force to produce torque(moment of force) then force must not be parallel to the distance vector and should not be parallel to the axis about which the body is going to rotate.
The ease with which a body will rotate after applying torque(moment of force) is called the moment of inertia of that body along a given axis.
In the above calculation, we wrote $\overrightarrow \tau = \overrightarrow r \times \overrightarrow F $ which means that the torque(moment of force) vector is the vector obtained through the cross product/vector product of $\overrightarrow r $ and $\overrightarrow F $.
$\overrightarrow \tau $ is the counterpart of $\overrightarrow F $ i.e. the significance of $\overrightarrow F $ in translation motion is similar to that of $\overrightarrow \tau $in rotational motion.
Note:
Torque(moment of force) is the amount of force that can cause an object to rotate about an axis. Just as force is what causes an object to accelerate in linear kinematics, torque causes an object to gain an angular acceleration. Torque is a vector quantity.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

