
Like $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}$ , what is the rule for $\dfrac{d}{dx}\left( uv \right)$ .
Answer
505.2k+ views
Hint: We have to consider $u=f\left( x \right),v=g\left( x \right)$ and $F\left( x \right)=uv$ . We will then consider $F\left( x \right)=f\left( x \right)g\left( x \right)$ and $F\left( x+h \right)=f\left( x+h \right)g\left( x+h \right)$ . Then, we will use the definition of derivatives, that is, ${F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{F\left( x+h \right)-F\left( x \right)}{h}$ . We will substitute the above values in this formula. Then, we have to add and subtract $f\left( x+h \right)g\left( x \right)$ in the numerator. We will then take the common terms outside and apply the limits.
Complete step by step answer:
We have to obtain the rule for $\dfrac{d}{dx}\left( uv \right)$ like the rule $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}$ . Let us consider $u=f\left( x \right)...\left( a \right)$ , $v=g\left( x \right)...\left( b \right)$ and $F\left( x \right)=uv...\left( c \right)$ . Let us also consider $F\left( x \right)=f\left( x \right)g\left( x \right)...\left( i \right)$ .
Let us replace x with $x+h$ in equation (i).
$\Rightarrow F\left( x+h \right)=f\left( x+h \right)g\left( x+h \right)...\left( ii \right)$
We know that derivative of a function F(x) is given by
${F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{F\left( x+h \right)-F\left( x \right)}{h}$
Let us substitute (i) and (ii) in the above equation.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x \right)g\left( x \right)}{h}\]
We have to add and subtract $f\left( x+h \right)g\left( x \right)$ in the numerator.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x+h \right)g\left( x \right)+f\left( x+h \right)g\left( x \right)-f\left( x \right)g\left( x \right)}{h}\]
Let us take common terms outside.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)+g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h}\]
We can rewrite the above equation as
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\left[ f\left( x+h \right)\dfrac{g\left( x+h \right)-g\left( x \right)}{h}+g\left( x \right)\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right]\]
We know that $\displaystyle \lim_{x\to a}f\left( x \right)g\left( x \right)=\displaystyle \lim_{x\to a}f\left( x \right)\times \displaystyle \lim_{x\to a}g\left( x \right)$ . Therefore, we can write the above equation as
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}f\left( x+h \right)\displaystyle \lim_{h \to 0}\dfrac{g\left( x+h \right)-g\left( x \right)}{h}+\displaystyle \lim_{h \to 0}g\left( x \right)\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\]
We know that derivative of a function f(x) is given by the formula ${f}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ . Therefore, the above equation becomes
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}f\left( x+h \right){g}'\left( x \right)+\displaystyle \lim_{h \to 0}g\left( x \right)\times {f}'\left( x \right)\]
Let us apply the limits. We know that the limit of a constant is constant, that is, $\displaystyle \lim_{x\to a}g\left( y \right)=g\left( y \right)$ .
\[\begin{align}
& \Rightarrow {F}'\left( x \right)=f\left( x+0 \right){g}'\left( x \right)+g\left( x \right){f}'\left( x \right) \\
& \Rightarrow {F}'\left( x \right)=f\left( x \right){g}'\left( x \right)+g\left( x \right){f}'\left( x \right) \\
\end{align}\]
Let us substitute (a) , (b) and (c) in the above equation.
\[\Rightarrow \dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\]
Note: Students must be thorough with the derivative formula in terms of the limits. They have a chance of making error by writing the derivative formula as ${f}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)+f\left( x \right)}{h}$ . Students must understand the properties of limits and how to apply the limits. We commonly call the rule \[\dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\] as product rule.
Complete step by step answer:
We have to obtain the rule for $\dfrac{d}{dx}\left( uv \right)$ like the rule $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}$ . Let us consider $u=f\left( x \right)...\left( a \right)$ , $v=g\left( x \right)...\left( b \right)$ and $F\left( x \right)=uv...\left( c \right)$ . Let us also consider $F\left( x \right)=f\left( x \right)g\left( x \right)...\left( i \right)$ .
Let us replace x with $x+h$ in equation (i).
$\Rightarrow F\left( x+h \right)=f\left( x+h \right)g\left( x+h \right)...\left( ii \right)$
We know that derivative of a function F(x) is given by
${F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{F\left( x+h \right)-F\left( x \right)}{h}$
Let us substitute (i) and (ii) in the above equation.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x \right)g\left( x \right)}{h}\]
We have to add and subtract $f\left( x+h \right)g\left( x \right)$ in the numerator.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x+h \right)g\left( x \right)+f\left( x+h \right)g\left( x \right)-f\left( x \right)g\left( x \right)}{h}\]
Let us take common terms outside.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)+g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h}\]
We can rewrite the above equation as
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\left[ f\left( x+h \right)\dfrac{g\left( x+h \right)-g\left( x \right)}{h}+g\left( x \right)\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right]\]
We know that $\displaystyle \lim_{x\to a}f\left( x \right)g\left( x \right)=\displaystyle \lim_{x\to a}f\left( x \right)\times \displaystyle \lim_{x\to a}g\left( x \right)$ . Therefore, we can write the above equation as
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}f\left( x+h \right)\displaystyle \lim_{h \to 0}\dfrac{g\left( x+h \right)-g\left( x \right)}{h}+\displaystyle \lim_{h \to 0}g\left( x \right)\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\]
We know that derivative of a function f(x) is given by the formula ${f}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ . Therefore, the above equation becomes
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}f\left( x+h \right){g}'\left( x \right)+\displaystyle \lim_{h \to 0}g\left( x \right)\times {f}'\left( x \right)\]
Let us apply the limits. We know that the limit of a constant is constant, that is, $\displaystyle \lim_{x\to a}g\left( y \right)=g\left( y \right)$ .
\[\begin{align}
& \Rightarrow {F}'\left( x \right)=f\left( x+0 \right){g}'\left( x \right)+g\left( x \right){f}'\left( x \right) \\
& \Rightarrow {F}'\left( x \right)=f\left( x \right){g}'\left( x \right)+g\left( x \right){f}'\left( x \right) \\
\end{align}\]
Let us substitute (a) , (b) and (c) in the above equation.
\[\Rightarrow \dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\]
Note: Students must be thorough with the derivative formula in terms of the limits. They have a chance of making error by writing the derivative formula as ${f}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)+f\left( x \right)}{h}$ . Students must understand the properties of limits and how to apply the limits. We commonly call the rule \[\dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\] as product rule.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

