
Like $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}$ , what is the rule for $\dfrac{d}{dx}\left( uv \right)$ .
Answer
518.4k+ views
Hint: We have to consider $u=f\left( x \right),v=g\left( x \right)$ and $F\left( x \right)=uv$ . We will then consider $F\left( x \right)=f\left( x \right)g\left( x \right)$ and $F\left( x+h \right)=f\left( x+h \right)g\left( x+h \right)$ . Then, we will use the definition of derivatives, that is, ${F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{F\left( x+h \right)-F\left( x \right)}{h}$ . We will substitute the above values in this formula. Then, we have to add and subtract $f\left( x+h \right)g\left( x \right)$ in the numerator. We will then take the common terms outside and apply the limits.
Complete step by step answer:
We have to obtain the rule for $\dfrac{d}{dx}\left( uv \right)$ like the rule $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}$ . Let us consider $u=f\left( x \right)...\left( a \right)$ , $v=g\left( x \right)...\left( b \right)$ and $F\left( x \right)=uv...\left( c \right)$ . Let us also consider $F\left( x \right)=f\left( x \right)g\left( x \right)...\left( i \right)$ .
Let us replace x with $x+h$ in equation (i).
$\Rightarrow F\left( x+h \right)=f\left( x+h \right)g\left( x+h \right)...\left( ii \right)$
We know that derivative of a function F(x) is given by
${F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{F\left( x+h \right)-F\left( x \right)}{h}$
Let us substitute (i) and (ii) in the above equation.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x \right)g\left( x \right)}{h}\]
We have to add and subtract $f\left( x+h \right)g\left( x \right)$ in the numerator.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x+h \right)g\left( x \right)+f\left( x+h \right)g\left( x \right)-f\left( x \right)g\left( x \right)}{h}\]
Let us take common terms outside.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)+g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h}\]
We can rewrite the above equation as
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\left[ f\left( x+h \right)\dfrac{g\left( x+h \right)-g\left( x \right)}{h}+g\left( x \right)\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right]\]
We know that $\displaystyle \lim_{x\to a}f\left( x \right)g\left( x \right)=\displaystyle \lim_{x\to a}f\left( x \right)\times \displaystyle \lim_{x\to a}g\left( x \right)$ . Therefore, we can write the above equation as
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}f\left( x+h \right)\displaystyle \lim_{h \to 0}\dfrac{g\left( x+h \right)-g\left( x \right)}{h}+\displaystyle \lim_{h \to 0}g\left( x \right)\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\]
We know that derivative of a function f(x) is given by the formula ${f}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ . Therefore, the above equation becomes
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}f\left( x+h \right){g}'\left( x \right)+\displaystyle \lim_{h \to 0}g\left( x \right)\times {f}'\left( x \right)\]
Let us apply the limits. We know that the limit of a constant is constant, that is, $\displaystyle \lim_{x\to a}g\left( y \right)=g\left( y \right)$ .
\[\begin{align}
& \Rightarrow {F}'\left( x \right)=f\left( x+0 \right){g}'\left( x \right)+g\left( x \right){f}'\left( x \right) \\
& \Rightarrow {F}'\left( x \right)=f\left( x \right){g}'\left( x \right)+g\left( x \right){f}'\left( x \right) \\
\end{align}\]
Let us substitute (a) , (b) and (c) in the above equation.
\[\Rightarrow \dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\]
Note: Students must be thorough with the derivative formula in terms of the limits. They have a chance of making error by writing the derivative formula as ${f}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)+f\left( x \right)}{h}$ . Students must understand the properties of limits and how to apply the limits. We commonly call the rule \[\dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\] as product rule.
Complete step by step answer:
We have to obtain the rule for $\dfrac{d}{dx}\left( uv \right)$ like the rule $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}$ . Let us consider $u=f\left( x \right)...\left( a \right)$ , $v=g\left( x \right)...\left( b \right)$ and $F\left( x \right)=uv...\left( c \right)$ . Let us also consider $F\left( x \right)=f\left( x \right)g\left( x \right)...\left( i \right)$ .
Let us replace x with $x+h$ in equation (i).
$\Rightarrow F\left( x+h \right)=f\left( x+h \right)g\left( x+h \right)...\left( ii \right)$
We know that derivative of a function F(x) is given by
${F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{F\left( x+h \right)-F\left( x \right)}{h}$
Let us substitute (i) and (ii) in the above equation.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x \right)g\left( x \right)}{h}\]
We have to add and subtract $f\left( x+h \right)g\left( x \right)$ in the numerator.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x+h \right)g\left( x \right)+f\left( x+h \right)g\left( x \right)-f\left( x \right)g\left( x \right)}{h}\]
Let us take common terms outside.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)+g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h}\]
We can rewrite the above equation as
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\left[ f\left( x+h \right)\dfrac{g\left( x+h \right)-g\left( x \right)}{h}+g\left( x \right)\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right]\]
We know that $\displaystyle \lim_{x\to a}f\left( x \right)g\left( x \right)=\displaystyle \lim_{x\to a}f\left( x \right)\times \displaystyle \lim_{x\to a}g\left( x \right)$ . Therefore, we can write the above equation as
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}f\left( x+h \right)\displaystyle \lim_{h \to 0}\dfrac{g\left( x+h \right)-g\left( x \right)}{h}+\displaystyle \lim_{h \to 0}g\left( x \right)\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\]
We know that derivative of a function f(x) is given by the formula ${f}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ . Therefore, the above equation becomes
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}f\left( x+h \right){g}'\left( x \right)+\displaystyle \lim_{h \to 0}g\left( x \right)\times {f}'\left( x \right)\]
Let us apply the limits. We know that the limit of a constant is constant, that is, $\displaystyle \lim_{x\to a}g\left( y \right)=g\left( y \right)$ .
\[\begin{align}
& \Rightarrow {F}'\left( x \right)=f\left( x+0 \right){g}'\left( x \right)+g\left( x \right){f}'\left( x \right) \\
& \Rightarrow {F}'\left( x \right)=f\left( x \right){g}'\left( x \right)+g\left( x \right){f}'\left( x \right) \\
\end{align}\]
Let us substitute (a) , (b) and (c) in the above equation.
\[\Rightarrow \dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\]
Note: Students must be thorough with the derivative formula in terms of the limits. They have a chance of making error by writing the derivative formula as ${f}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)+f\left( x \right)}{h}$ . Students must understand the properties of limits and how to apply the limits. We commonly call the rule \[\dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\] as product rule.
Recently Updated Pages
Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Business Studies: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

RNA and DNA are chiral molecules their chirality is class 12 chemistry CBSE

