Like $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}$ , what is the rule for $\dfrac{d}{dx}\left( uv \right)$ .
Answer
281.1k+ views
Hint: We have to consider $u=f\left( x \right),v=g\left( x \right)$ and $F\left( x \right)=uv$ . We will then consider $F\left( x \right)=f\left( x \right)g\left( x \right)$ and $F\left( x+h \right)=f\left( x+h \right)g\left( x+h \right)$ . Then, we will use the definition of derivatives, that is, ${F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{F\left( x+h \right)-F\left( x \right)}{h}$ . We will substitute the above values in this formula. Then, we have to add and subtract $f\left( x+h \right)g\left( x \right)$ in the numerator. We will then take the common terms outside and apply the limits.
Complete step by step answer:
We have to obtain the rule for $\dfrac{d}{dx}\left( uv \right)$ like the rule $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}$ . Let us consider $u=f\left( x \right)...\left( a \right)$ , $v=g\left( x \right)...\left( b \right)$ and $F\left( x \right)=uv...\left( c \right)$ . Let us also consider $F\left( x \right)=f\left( x \right)g\left( x \right)...\left( i \right)$ .
Let us replace x with $x+h$ in equation (i).
$\Rightarrow F\left( x+h \right)=f\left( x+h \right)g\left( x+h \right)...\left( ii \right)$
We know that derivative of a function F(x) is given by
${F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{F\left( x+h \right)-F\left( x \right)}{h}$
Let us substitute (i) and (ii) in the above equation.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x \right)g\left( x \right)}{h}\]
We have to add and subtract $f\left( x+h \right)g\left( x \right)$ in the numerator.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x+h \right)g\left( x \right)+f\left( x+h \right)g\left( x \right)-f\left( x \right)g\left( x \right)}{h}\]
Let us take common terms outside.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)+g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h}\]
We can rewrite the above equation as
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\left[ f\left( x+h \right)\dfrac{g\left( x+h \right)-g\left( x \right)}{h}+g\left( x \right)\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right]\]
We know that $\displaystyle \lim_{x\to a}f\left( x \right)g\left( x \right)=\displaystyle \lim_{x\to a}f\left( x \right)\times \displaystyle \lim_{x\to a}g\left( x \right)$ . Therefore, we can write the above equation as
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}f\left( x+h \right)\displaystyle \lim_{h \to 0}\dfrac{g\left( x+h \right)-g\left( x \right)}{h}+\displaystyle \lim_{h \to 0}g\left( x \right)\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\]
We know that derivative of a function f(x) is given by the formula ${f}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ . Therefore, the above equation becomes
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}f\left( x+h \right){g}'\left( x \right)+\displaystyle \lim_{h \to 0}g\left( x \right)\times {f}'\left( x \right)\]
Let us apply the limits. We know that the limit of a constant is constant, that is, $\displaystyle \lim_{x\to a}g\left( y \right)=g\left( y \right)$ .
\[\begin{align}
& \Rightarrow {F}'\left( x \right)=f\left( x+0 \right){g}'\left( x \right)+g\left( x \right){f}'\left( x \right) \\
& \Rightarrow {F}'\left( x \right)=f\left( x \right){g}'\left( x \right)+g\left( x \right){f}'\left( x \right) \\
\end{align}\]
Let us substitute (a) , (b) and (c) in the above equation.
\[\Rightarrow \dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\]
Note: Students must be thorough with the derivative formula in terms of the limits. They have a chance of making error by writing the derivative formula as ${f}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)+f\left( x \right)}{h}$ . Students must understand the properties of limits and how to apply the limits. We commonly call the rule \[\dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\] as product rule.
Complete step by step answer:
We have to obtain the rule for $\dfrac{d}{dx}\left( uv \right)$ like the rule $\dfrac{d}{dx}\left( \dfrac{u}{v} \right)=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}$ . Let us consider $u=f\left( x \right)...\left( a \right)$ , $v=g\left( x \right)...\left( b \right)$ and $F\left( x \right)=uv...\left( c \right)$ . Let us also consider $F\left( x \right)=f\left( x \right)g\left( x \right)...\left( i \right)$ .
Let us replace x with $x+h$ in equation (i).
$\Rightarrow F\left( x+h \right)=f\left( x+h \right)g\left( x+h \right)...\left( ii \right)$
We know that derivative of a function F(x) is given by
${F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{F\left( x+h \right)-F\left( x \right)}{h}$
Let us substitute (i) and (ii) in the above equation.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x \right)g\left( x \right)}{h}\]
We have to add and subtract $f\left( x+h \right)g\left( x \right)$ in the numerator.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)g\left( x+h \right)-f\left( x+h \right)g\left( x \right)+f\left( x+h \right)g\left( x \right)-f\left( x \right)g\left( x \right)}{h}\]
Let us take common terms outside.
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)\left( g\left( x+h \right)-g\left( x \right) \right)+g\left( x \right)\left( f\left( x+h \right)-f\left( x \right) \right)}{h}\]
We can rewrite the above equation as
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}\left[ f\left( x+h \right)\dfrac{g\left( x+h \right)-g\left( x \right)}{h}+g\left( x \right)\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \right]\]
We know that $\displaystyle \lim_{x\to a}f\left( x \right)g\left( x \right)=\displaystyle \lim_{x\to a}f\left( x \right)\times \displaystyle \lim_{x\to a}g\left( x \right)$ . Therefore, we can write the above equation as
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}f\left( x+h \right)\displaystyle \lim_{h \to 0}\dfrac{g\left( x+h \right)-g\left( x \right)}{h}+\displaystyle \lim_{h \to 0}g\left( x \right)\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}\]
We know that derivative of a function f(x) is given by the formula ${f}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)-f\left( x \right)}{h}$ . Therefore, the above equation becomes
\[\Rightarrow {F}'\left( x \right)=\displaystyle \lim_{h \to 0}f\left( x+h \right){g}'\left( x \right)+\displaystyle \lim_{h \to 0}g\left( x \right)\times {f}'\left( x \right)\]
Let us apply the limits. We know that the limit of a constant is constant, that is, $\displaystyle \lim_{x\to a}g\left( y \right)=g\left( y \right)$ .
\[\begin{align}
& \Rightarrow {F}'\left( x \right)=f\left( x+0 \right){g}'\left( x \right)+g\left( x \right){f}'\left( x \right) \\
& \Rightarrow {F}'\left( x \right)=f\left( x \right){g}'\left( x \right)+g\left( x \right){f}'\left( x \right) \\
\end{align}\]
Let us substitute (a) , (b) and (c) in the above equation.
\[\Rightarrow \dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\]
Note: Students must be thorough with the derivative formula in terms of the limits. They have a chance of making error by writing the derivative formula as ${f}'\left( x \right)=\displaystyle \lim_{h \to 0}\dfrac{f\left( x+h \right)+f\left( x \right)}{h}$ . Students must understand the properties of limits and how to apply the limits. We commonly call the rule \[\dfrac{d}{dx}\left( uv \right)=u\dfrac{d}{dx}v+v\dfrac{d}{dx}u\] as product rule.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
The ray passing through the of the lens is not deviated class 10 physics CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

What is the nlx method How is it useful class 11 chemistry CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

What is the difference between anaerobic aerobic respiration class 10 biology CBSE
