Let $a=\min \left\{ {{x}^{2}}+2x+3,x\in R \right\}$ and $b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{1-\cos \theta }{{{\theta }^{2}}}$. The value of $\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}$ is
(a) $\dfrac{{{2}^{n+1}}-1}{{{3.2}^{n}}}$
(b) $\dfrac{{{2}^{n+1}}+1}{{{3.2}^{n}}}$
(c) $\dfrac{{{4}^{n+1}}-1}{{{3.2}^{n}}}$
(d) none of these
Last updated date: 22nd Mar 2023
•
Total views: 306.6k
•
Views today: 5.87k
Answer
306.6k+ views
Hint: $'a'$ can be found out by using the formula for minimum value of a quadratic polynomial. We can use the L' Hopital rule to find $'b'$ . The required answer in the form of summation is a Geometric progression.
In the question, it is given $a=\min \left\{ {{x}^{2}}+2x+3,x\in R \right\}$
$\Rightarrow a=$ minimum value of ${{x}^{2}}+2x+3$
For a quadratic polynomial $a{{x}^{2}}+bx+c$, the minimum value is given by the formula,
$\dfrac{-\left( {{b}^{2}}-4ac \right)}{4a}.............\left( 1 \right)$
Since the polynomial given in the question is ${{x}^{2}}+2x+3$, substituting $a=1,b=2,c=3$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& a=\dfrac{-\left( {{\left( 2 \right)}^{2}}-4\left( 1 \right)\left( 3 \right) \right)}{4\left( 1 \right)} \\
& \Rightarrow a=\dfrac{-\left( 4-12 \right)}{4} \\
& \Rightarrow a=\dfrac{-\left( -8 \right)}{4} \\
& \Rightarrow a=\dfrac{8}{4} \\
& \Rightarrow a=2...........\left( 2 \right) \\
\end{align}$
Also, it is given in the question $b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{1-\cos \theta }{{{\theta }^{2}}}$. If we substitute $\theta =0$ in the limit function, we can notice that this limit is of the form \[\dfrac{0}{0}\]. Since this limit is of the form \[\dfrac{0}{0}\], we can use L’ Hopital rule to solve this limit. In L’ Hopital rule, we individually differentiate the numerator and the denominator with respect to the limit variable i.e. $\theta $ in this case and then apply the limit again.
Applying L’ Hopital rule on $b$, we get,
$\begin{align}
& b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( 1-\cos \theta \right)}{d\theta }}{\dfrac{d{{\theta }^{2}}}{d\theta }} \\
& \Rightarrow b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{2\theta } \\
& \Rightarrow b=\dfrac{1}{2}\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }...........\left( 3 \right) \\
\end{align}$
There is a formula $\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }=1$. Substituting $\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }=1$ in equation $\left( 3 \right)$, we get,
$b=\dfrac{1}{2}...........\left( 4 \right)$
In the question, it is asked to find the value of $\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}$. Substituting equation $\left( 2 \right)$ and equation $\left( 4 \right)$ in $\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}$, we get,
\[\begin{align}
& \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r}}.\dfrac{1}{{{2}^{n-r}}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r-\left( n-r \right)}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r-n+r}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{2r-n}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{\dfrac{{{2}^{2r}}}{{{2}^{n}}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{\dfrac{{{4}^{r}}}{{{2}^{n}}}} \\
\end{align}\]
Since the limits of this summation is with respect to $r$, we can take $\dfrac{1}{{{2}^{n}}}$ out of the summation.
\[\Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\sum\limits_{r=0}^{n}{{{4}^{r}}}\]
Evaluating the summation, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( {{4}^{0}}+{{4}^{1}}+{{4}^{2}}+{{4}^{3}}+............+{{4}^{n}} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( 1+{{4}^{1}}+{{4}^{2}}+{{4}^{3}}+............+{{4}^{n}} \right).........\left( 5 \right) \\
& \\
\end{align}\]
The above series is a geometric progression of which we have to calculate the sum.
The sum of the G.P. $a,ar,a{{r}^{2}},a{{r}^{3}},............,a{{r}^{x}}$ is given by the formula,
$S=\dfrac{a\left( {{r}^{x}}-1 \right)}{r-1}........\left( 6 \right)$
From equation $\left( 5 \right)$, substituting $a=1,r=4,x=n+1$ in equation $\left( 6 \right)$, we get,
\[\begin{align}
& \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( \dfrac{1\left( {{4}^{n+1}}-1 \right)}{4-1} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( \dfrac{{{4}^{n+1}}-1}{3} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{{{4}^{n+1}}-1}{{{2}^{n}}.3} \\
\end{align}\]
So the answer is option (c)
Note: There is a possibility of error while finding the value of $b$, since it involves derivative of $\cos x$ which is equal to $-\sin x$. But sometimes, we may get confused while applying the negative sign and may write the derivative of $\cos x$ as $\sin x$ which will lead to an incorrect answer.
In the question, it is given $a=\min \left\{ {{x}^{2}}+2x+3,x\in R \right\}$
$\Rightarrow a=$ minimum value of ${{x}^{2}}+2x+3$
For a quadratic polynomial $a{{x}^{2}}+bx+c$, the minimum value is given by the formula,
$\dfrac{-\left( {{b}^{2}}-4ac \right)}{4a}.............\left( 1 \right)$
Since the polynomial given in the question is ${{x}^{2}}+2x+3$, substituting $a=1,b=2,c=3$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& a=\dfrac{-\left( {{\left( 2 \right)}^{2}}-4\left( 1 \right)\left( 3 \right) \right)}{4\left( 1 \right)} \\
& \Rightarrow a=\dfrac{-\left( 4-12 \right)}{4} \\
& \Rightarrow a=\dfrac{-\left( -8 \right)}{4} \\
& \Rightarrow a=\dfrac{8}{4} \\
& \Rightarrow a=2...........\left( 2 \right) \\
\end{align}$
Also, it is given in the question $b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{1-\cos \theta }{{{\theta }^{2}}}$. If we substitute $\theta =0$ in the limit function, we can notice that this limit is of the form \[\dfrac{0}{0}\]. Since this limit is of the form \[\dfrac{0}{0}\], we can use L’ Hopital rule to solve this limit. In L’ Hopital rule, we individually differentiate the numerator and the denominator with respect to the limit variable i.e. $\theta $ in this case and then apply the limit again.
Applying L’ Hopital rule on $b$, we get,
$\begin{align}
& b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( 1-\cos \theta \right)}{d\theta }}{\dfrac{d{{\theta }^{2}}}{d\theta }} \\
& \Rightarrow b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{2\theta } \\
& \Rightarrow b=\dfrac{1}{2}\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }...........\left( 3 \right) \\
\end{align}$
There is a formula $\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }=1$. Substituting $\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }=1$ in equation $\left( 3 \right)$, we get,
$b=\dfrac{1}{2}...........\left( 4 \right)$
In the question, it is asked to find the value of $\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}$. Substituting equation $\left( 2 \right)$ and equation $\left( 4 \right)$ in $\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}$, we get,
\[\begin{align}
& \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r}}.\dfrac{1}{{{2}^{n-r}}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r-\left( n-r \right)}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r-n+r}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{2r-n}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{\dfrac{{{2}^{2r}}}{{{2}^{n}}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{\dfrac{{{4}^{r}}}{{{2}^{n}}}} \\
\end{align}\]
Since the limits of this summation is with respect to $r$, we can take $\dfrac{1}{{{2}^{n}}}$ out of the summation.
\[\Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\sum\limits_{r=0}^{n}{{{4}^{r}}}\]
Evaluating the summation, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( {{4}^{0}}+{{4}^{1}}+{{4}^{2}}+{{4}^{3}}+............+{{4}^{n}} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( 1+{{4}^{1}}+{{4}^{2}}+{{4}^{3}}+............+{{4}^{n}} \right).........\left( 5 \right) \\
& \\
\end{align}\]
The above series is a geometric progression of which we have to calculate the sum.
The sum of the G.P. $a,ar,a{{r}^{2}},a{{r}^{3}},............,a{{r}^{x}}$ is given by the formula,
$S=\dfrac{a\left( {{r}^{x}}-1 \right)}{r-1}........\left( 6 \right)$
From equation $\left( 5 \right)$, substituting $a=1,r=4,x=n+1$ in equation $\left( 6 \right)$, we get,
\[\begin{align}
& \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( \dfrac{1\left( {{4}^{n+1}}-1 \right)}{4-1} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( \dfrac{{{4}^{n+1}}-1}{3} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{{{4}^{n+1}}-1}{{{2}^{n}}.3} \\
\end{align}\]
So the answer is option (c)
Note: There is a possibility of error while finding the value of $b$, since it involves derivative of $\cos x$ which is equal to $-\sin x$. But sometimes, we may get confused while applying the negative sign and may write the derivative of $\cos x$ as $\sin x$ which will lead to an incorrect answer.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
