Answer
Verified
493.8k+ views
Hint: $'a'$ can be found out by using the formula for minimum value of a quadratic polynomial. We can use the L' Hopital rule to find $'b'$ . The required answer in the form of summation is a Geometric progression.
In the question, it is given $a=\min \left\{ {{x}^{2}}+2x+3,x\in R \right\}$
$\Rightarrow a=$ minimum value of ${{x}^{2}}+2x+3$
For a quadratic polynomial $a{{x}^{2}}+bx+c$, the minimum value is given by the formula,
$\dfrac{-\left( {{b}^{2}}-4ac \right)}{4a}.............\left( 1 \right)$
Since the polynomial given in the question is ${{x}^{2}}+2x+3$, substituting $a=1,b=2,c=3$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& a=\dfrac{-\left( {{\left( 2 \right)}^{2}}-4\left( 1 \right)\left( 3 \right) \right)}{4\left( 1 \right)} \\
& \Rightarrow a=\dfrac{-\left( 4-12 \right)}{4} \\
& \Rightarrow a=\dfrac{-\left( -8 \right)}{4} \\
& \Rightarrow a=\dfrac{8}{4} \\
& \Rightarrow a=2...........\left( 2 \right) \\
\end{align}$
Also, it is given in the question $b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{1-\cos \theta }{{{\theta }^{2}}}$. If we substitute $\theta =0$ in the limit function, we can notice that this limit is of the form \[\dfrac{0}{0}\]. Since this limit is of the form \[\dfrac{0}{0}\], we can use L’ Hopital rule to solve this limit. In L’ Hopital rule, we individually differentiate the numerator and the denominator with respect to the limit variable i.e. $\theta $ in this case and then apply the limit again.
Applying L’ Hopital rule on $b$, we get,
$\begin{align}
& b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( 1-\cos \theta \right)}{d\theta }}{\dfrac{d{{\theta }^{2}}}{d\theta }} \\
& \Rightarrow b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{2\theta } \\
& \Rightarrow b=\dfrac{1}{2}\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }...........\left( 3 \right) \\
\end{align}$
There is a formula $\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }=1$. Substituting $\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }=1$ in equation $\left( 3 \right)$, we get,
$b=\dfrac{1}{2}...........\left( 4 \right)$
In the question, it is asked to find the value of $\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}$. Substituting equation $\left( 2 \right)$ and equation $\left( 4 \right)$ in $\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}$, we get,
\[\begin{align}
& \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r}}.\dfrac{1}{{{2}^{n-r}}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r-\left( n-r \right)}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r-n+r}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{2r-n}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{\dfrac{{{2}^{2r}}}{{{2}^{n}}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{\dfrac{{{4}^{r}}}{{{2}^{n}}}} \\
\end{align}\]
Since the limits of this summation is with respect to $r$, we can take $\dfrac{1}{{{2}^{n}}}$ out of the summation.
\[\Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\sum\limits_{r=0}^{n}{{{4}^{r}}}\]
Evaluating the summation, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( {{4}^{0}}+{{4}^{1}}+{{4}^{2}}+{{4}^{3}}+............+{{4}^{n}} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( 1+{{4}^{1}}+{{4}^{2}}+{{4}^{3}}+............+{{4}^{n}} \right).........\left( 5 \right) \\
& \\
\end{align}\]
The above series is a geometric progression of which we have to calculate the sum.
The sum of the G.P. $a,ar,a{{r}^{2}},a{{r}^{3}},............,a{{r}^{x}}$ is given by the formula,
$S=\dfrac{a\left( {{r}^{x}}-1 \right)}{r-1}........\left( 6 \right)$
From equation $\left( 5 \right)$, substituting $a=1,r=4,x=n+1$ in equation $\left( 6 \right)$, we get,
\[\begin{align}
& \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( \dfrac{1\left( {{4}^{n+1}}-1 \right)}{4-1} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( \dfrac{{{4}^{n+1}}-1}{3} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{{{4}^{n+1}}-1}{{{2}^{n}}.3} \\
\end{align}\]
So the answer is option (c)
Note: There is a possibility of error while finding the value of $b$, since it involves derivative of $\cos x$ which is equal to $-\sin x$. But sometimes, we may get confused while applying the negative sign and may write the derivative of $\cos x$ as $\sin x$ which will lead to an incorrect answer.
In the question, it is given $a=\min \left\{ {{x}^{2}}+2x+3,x\in R \right\}$
$\Rightarrow a=$ minimum value of ${{x}^{2}}+2x+3$
For a quadratic polynomial $a{{x}^{2}}+bx+c$, the minimum value is given by the formula,
$\dfrac{-\left( {{b}^{2}}-4ac \right)}{4a}.............\left( 1 \right)$
Since the polynomial given in the question is ${{x}^{2}}+2x+3$, substituting $a=1,b=2,c=3$ in equation $\left( 1 \right)$, we get,
$\begin{align}
& a=\dfrac{-\left( {{\left( 2 \right)}^{2}}-4\left( 1 \right)\left( 3 \right) \right)}{4\left( 1 \right)} \\
& \Rightarrow a=\dfrac{-\left( 4-12 \right)}{4} \\
& \Rightarrow a=\dfrac{-\left( -8 \right)}{4} \\
& \Rightarrow a=\dfrac{8}{4} \\
& \Rightarrow a=2...........\left( 2 \right) \\
\end{align}$
Also, it is given in the question $b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{1-\cos \theta }{{{\theta }^{2}}}$. If we substitute $\theta =0$ in the limit function, we can notice that this limit is of the form \[\dfrac{0}{0}\]. Since this limit is of the form \[\dfrac{0}{0}\], we can use L’ Hopital rule to solve this limit. In L’ Hopital rule, we individually differentiate the numerator and the denominator with respect to the limit variable i.e. $\theta $ in this case and then apply the limit again.
Applying L’ Hopital rule on $b$, we get,
$\begin{align}
& b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\dfrac{d\left( 1-\cos \theta \right)}{d\theta }}{\dfrac{d{{\theta }^{2}}}{d\theta }} \\
& \Rightarrow b=\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{2\theta } \\
& \Rightarrow b=\dfrac{1}{2}\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }...........\left( 3 \right) \\
\end{align}$
There is a formula $\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }=1$. Substituting $\underset{\theta \to 0}{\mathop{\lim }}\,\dfrac{\sin \theta }{\theta }=1$ in equation $\left( 3 \right)$, we get,
$b=\dfrac{1}{2}...........\left( 4 \right)$
In the question, it is asked to find the value of $\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}$. Substituting equation $\left( 2 \right)$ and equation $\left( 4 \right)$ in $\sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}$, we get,
\[\begin{align}
& \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r}}.\dfrac{1}{{{2}^{n-r}}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r-\left( n-r \right)}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{r-n+r}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{{{2}^{2r-n}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{\dfrac{{{2}^{2r}}}{{{2}^{n}}}} \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\sum\limits_{r=0}^{n}{\dfrac{{{4}^{r}}}{{{2}^{n}}}} \\
\end{align}\]
Since the limits of this summation is with respect to $r$, we can take $\dfrac{1}{{{2}^{n}}}$ out of the summation.
\[\Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\sum\limits_{r=0}^{n}{{{4}^{r}}}\]
Evaluating the summation, we get,
\[\begin{align}
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( {{4}^{0}}+{{4}^{1}}+{{4}^{2}}+{{4}^{3}}+............+{{4}^{n}} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( 1+{{4}^{1}}+{{4}^{2}}+{{4}^{3}}+............+{{4}^{n}} \right).........\left( 5 \right) \\
& \\
\end{align}\]
The above series is a geometric progression of which we have to calculate the sum.
The sum of the G.P. $a,ar,a{{r}^{2}},a{{r}^{3}},............,a{{r}^{x}}$ is given by the formula,
$S=\dfrac{a\left( {{r}^{x}}-1 \right)}{r-1}........\left( 6 \right)$
From equation $\left( 5 \right)$, substituting $a=1,r=4,x=n+1$ in equation $\left( 6 \right)$, we get,
\[\begin{align}
& \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( \dfrac{1\left( {{4}^{n+1}}-1 \right)}{4-1} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{1}{{{2}^{n}}}\left( \dfrac{{{4}^{n+1}}-1}{3} \right) \\
& \Rightarrow \sum\limits_{r=0}^{n}{{{a}^{r}}.{{b}^{n-r}}}=\dfrac{{{4}^{n+1}}-1}{{{2}^{n}}.3} \\
\end{align}\]
So the answer is option (c)
Note: There is a possibility of error while finding the value of $b$, since it involves derivative of $\cos x$ which is equal to $-\sin x$. But sometimes, we may get confused while applying the negative sign and may write the derivative of $\cos x$ as $\sin x$ which will lead to an incorrect answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE