
Let a, b, c, d, e be natural numbers in an arithmetic progression such that $a+b+c+d+e$ is the cube of an integer and b + c + d is square of an integer. The least possible value of the number of digits of c is?
(a) 2
(b) 3
(c) 4
(d) 5
Answer
607.2k+ views
Hint: We know that in an arithmetic series, the numbers are in such sequence that the difference between two consecutive terms is constant throughout the series.
Complete step-by-step answer:
Let a, b, c, d, e be natural numbers in an arithmetic progression. We know that arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference between two consecutive terms is constant.
Let us assume that the common difference between them is D and the first term of series is A.
So according to our assumption, the numbers can be written as,
a = A – 2D
b = A – D
c = A
d = A + D
e = A + 2D
We know that it is given in the question that $a+b+c+d+e$ is the cube of an integer. So, let us suppose that the integer is p.
So, we can write that,
$a+b+c+d=e={{p}^{3}}....\left( i \right)$
Also, it is given in the question that b + c + d is the square of an integer. So, let us suppose that the integer is q.
So, we can write that,
$b+c+d={{q}^{2}}....\left( ii \right)$
Now we can substitute the values of A, B, C and D in equation (i) as shown below,
$A-2D+A-D+A+A+D+A+2D={{p}^{3}}$
On simplifying the above equation, we can observe that the variable D will get cancelled out and we will be left with the variable A in the left-hand side of the equation.
$5A={{p}^{3}}....\left( iii \right)$
Now substituting the value of B, C and D in equation (ii), we will get
$A-D+A+A+D={{q}^{2}}$
Again, on simplifying the above equation, we can observe that the variable D will get cancelled out and we will be left with variable A in the left-hand side of the equation.
$3A={{p}^{2}}....\left( iv \right)$
Now we have to divide equation (iv) by equation (iii). We will get,
$\dfrac{5A}{3A}=\dfrac{{{p}^{3}}}{{{q}^{2}}}$
We can observe that variable A is cancelled out and we will be left with
$\dfrac{5}{3}=\dfrac{{{p}^{3}}}{{{q}^{2}}}$
$\dfrac{{{p}^{3}}}{5}=\dfrac{{{q}^{2}}}{3}$
It is said in the question that we have to find the least possible value of the number of digits of c.
So by hit and trial method, the least possibility is
$\begin{align}
& p=5\times 3 \\
& q=5\times 3\times 3 \\
\end{align}$
As it will satisfy the equation, we have \[p=15\text{ and }q=45\].
Now we know that
$5A={{p}^{3}}$
So putting the value of p = 15 in it, we will get
$\begin{align}
& 5A={{15}^{3}} \\
& 5A=3375 \\
& A=675 \\
\end{align}$
Since we have the value of c = A, we get that c = 675.
It consists of 3 numbers of digits, so the answer to the question is 3. Hence, we get option b as the correct answer.
Note: We can approach this question with a different method. We can take elements of the A.P series as $a,a+d,a+2d...$ instead of $a=A-2D,\text{ }b=A-D,c=A,d=A+D,e=A+2D$. But, this method will increase the number of unknown variables in the equation and make it difficult to solve the question.
Complete step-by-step answer:
Let a, b, c, d, e be natural numbers in an arithmetic progression. We know that arithmetic progression or arithmetic sequence is a sequence of numbers such that the difference between two consecutive terms is constant.
Let us assume that the common difference between them is D and the first term of series is A.
So according to our assumption, the numbers can be written as,
a = A – 2D
b = A – D
c = A
d = A + D
e = A + 2D
We know that it is given in the question that $a+b+c+d+e$ is the cube of an integer. So, let us suppose that the integer is p.
So, we can write that,
$a+b+c+d=e={{p}^{3}}....\left( i \right)$
Also, it is given in the question that b + c + d is the square of an integer. So, let us suppose that the integer is q.
So, we can write that,
$b+c+d={{q}^{2}}....\left( ii \right)$
Now we can substitute the values of A, B, C and D in equation (i) as shown below,
$A-2D+A-D+A+A+D+A+2D={{p}^{3}}$
On simplifying the above equation, we can observe that the variable D will get cancelled out and we will be left with the variable A in the left-hand side of the equation.
$5A={{p}^{3}}....\left( iii \right)$
Now substituting the value of B, C and D in equation (ii), we will get
$A-D+A+A+D={{q}^{2}}$
Again, on simplifying the above equation, we can observe that the variable D will get cancelled out and we will be left with variable A in the left-hand side of the equation.
$3A={{p}^{2}}....\left( iv \right)$
Now we have to divide equation (iv) by equation (iii). We will get,
$\dfrac{5A}{3A}=\dfrac{{{p}^{3}}}{{{q}^{2}}}$
We can observe that variable A is cancelled out and we will be left with
$\dfrac{5}{3}=\dfrac{{{p}^{3}}}{{{q}^{2}}}$
$\dfrac{{{p}^{3}}}{5}=\dfrac{{{q}^{2}}}{3}$
It is said in the question that we have to find the least possible value of the number of digits of c.
So by hit and trial method, the least possibility is
$\begin{align}
& p=5\times 3 \\
& q=5\times 3\times 3 \\
\end{align}$
As it will satisfy the equation, we have \[p=15\text{ and }q=45\].
Now we know that
$5A={{p}^{3}}$
So putting the value of p = 15 in it, we will get
$\begin{align}
& 5A={{15}^{3}} \\
& 5A=3375 \\
& A=675 \\
\end{align}$
Since we have the value of c = A, we get that c = 675.
It consists of 3 numbers of digits, so the answer to the question is 3. Hence, we get option b as the correct answer.
Note: We can approach this question with a different method. We can take elements of the A.P series as $a,a+d,a+2d...$ instead of $a=A-2D,\text{ }b=A-D,c=A,d=A+D,e=A+2D$. But, this method will increase the number of unknown variables in the equation and make it difficult to solve the question.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

