
In Newton’s gravitational law, \[F\, = \,\dfrac{{GmM}}{{{r^2}}}\] , the quantity G is:
(A) Depends on the value of g at the place of observation
(B) Is used only when one of the masses is earth
(C) Is greatest at the surface of the earth
(D) Is a universal constant in nature
Answer
233.1k+ views
Hint: G is known as universal gravitational constant. It has been observationally verified over two centuries in almost every real situation possible. It is invariant throughout the Universe.
Complete step by step solution:
Newton using his experiments devised that the force of gravitational between 2 distant objects will be directly proportional to the product of the masses of the 2 bodies.
\[F \propto mM\]
Where m and M are the masses of the 2 bodies.
He further concluded that the force will be inversely proportional to the square of the distance between them. This is also known as the inverse square law.
\[F \propto \dfrac{1}{{{r^2}}}\]
Combining these 2 relations, we get:
\[F\, \propto \,\dfrac{{mM}}{{{r^2}}}\]
To the proportionality sign a constant was introduced,
\[F\, = \,\dfrac{{GmM}}{{{r^2}}}\]
Where G is known as universal gravitational constant. Its value is given \[6.67 \times {10^ - }^{11}\;N{m^2}k{g^ - }^2\]. It has been almost 300 years since Newton and the value of G has been found constant throughout the Universe. This value will remain constant whatever may be the surrounding conditions.
Therefore the option with the correct answer is option D.
Note: G (gravitational constant) should not be confused with g( acceleration due to gravity). The relation between these 2 quantities is given as \[g{\text{ }} = \sqrt {\dfrac{{GM}}{{{r^2}}}} \]
Complete step by step solution:
Newton using his experiments devised that the force of gravitational between 2 distant objects will be directly proportional to the product of the masses of the 2 bodies.
\[F \propto mM\]
Where m and M are the masses of the 2 bodies.
He further concluded that the force will be inversely proportional to the square of the distance between them. This is also known as the inverse square law.
\[F \propto \dfrac{1}{{{r^2}}}\]
Combining these 2 relations, we get:
\[F\, \propto \,\dfrac{{mM}}{{{r^2}}}\]
To the proportionality sign a constant was introduced,
\[F\, = \,\dfrac{{GmM}}{{{r^2}}}\]
Where G is known as universal gravitational constant. Its value is given \[6.67 \times {10^ - }^{11}\;N{m^2}k{g^ - }^2\]. It has been almost 300 years since Newton and the value of G has been found constant throughout the Universe. This value will remain constant whatever may be the surrounding conditions.
Therefore the option with the correct answer is option D.
Note: G (gravitational constant) should not be confused with g( acceleration due to gravity). The relation between these 2 quantities is given as \[g{\text{ }} = \sqrt {\dfrac{{GM}}{{{r^2}}}} \]
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
Understanding Average and RMS Value in Electrical Circuits

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Understanding Elastic Collisions in Two Dimensions

JEE Main Syllabus 2026: Download Detailed Subject-wise PDF

Other Pages
NCERT Solutions For Class 11 Physics Chapter 10 Thermal Properties of Matter (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

Understanding Collisions: Types and Examples for Students

Define thermal expansion for alpha beta and gamma A class 11 physics JEE_Main

Happy New Year Wishes 2026 – 100+ Messages, Quotes, Shayari, Images & Status in All Languages

Valentine Week 2026 List | Valentine Week Days, Dates & Meaning

