If$F(x)=\dfrac{1}{{{x}^{2}}}\int\limits_{4}^{x}{\left( 4{{t}^{2}}-2F'(t) \right)}dt$, then F’(4) equals
(a) $\dfrac{32}{9}$
(b) $\dfrac{64}{3}$
(c) $\dfrac{64}{9}$
(D) \[\dfrac{32}{3}\]
Last updated date: 24th Mar 2023
•
Total views: 309.6k
•
Views today: 8.86k
Answer
309.6k+ views
Hint: Integrate the problem directly and take F(t) as the integration of F’(t). After finding the integration, differentiate it to find the solution.
We will write the given equation and will start integrating directly,
$F(x)=\dfrac{1}{{{x}^{2}}}\int\limits_{4}^{x}{\left( 4{{t}^{2}}-2F'(t) \right)}dt$
We can integrate both the terms separately,
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$………………………………………… (1)
Now, we will integrate the first term as shown below,
\[\int\limits_{4}^{x}{4{{t}^{2}}}dt=4\int\limits_{4}^{x}{{{t}^{2}}}dt\]
We can solve it further by using the formula given below,
Formula:
\[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c\]
By using above formula we can write,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{t}^{2+1}}}{2+1} \right]_{4}^{x}\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{t3}{3} \right]_{4}^{x}\]
We will substitute the limits to get the answer as shown below,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{x}^{3}}}{3}-\dfrac{{{4}^{3}}}{3} \right]\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=\dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]\]…………………………………………. (2)
Also, to find\[\int\limits_{4}^{x}{F'(t)dt}\] we should know the relation between integration and derivative,
If, \[\dfrac{d}{dx}f(x)=f'(x)\] then \[\int{f'(x)}=f(x)\]
Therefore we can write \[\int\limits_{4}^{x}{F'(t)dt}\] by using above formula as,
\[\int\limits_{4}^{x}{F'(t)dt}=\left[ F(t) \right]_{4}^{x}\]
We will substitute the limits to get the answer, as shown below,
\[\therefore \int\limits_{4}^{x}{F'(t)dt}=\left[ F(x)-F(4) \right]\]…………………………………….. (3)
Now put the values of equation (2) and (3) in equation (1)
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]-2\left( F(x)-F(4) \right) \right]\]
Multiply by $\dfrac{4}{3}$ in to the bracket we will get,
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4\times {{x}^{3}}}{3}-\dfrac{4\times {{4}^{3}}}{3}-2F(x)+2F(4) \right]\]
Multiplying by \[\dfrac{1}{{{x}^{2}}}\] in the bracket we will get,
\[\therefore F(x)=\left[ \dfrac{4\times {{x}^{3}}}{3\times {{x}^{2}}}-\dfrac{4\times {{4}^{3}}}{3\times {{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
\[\therefore F(x)=\left[ \dfrac{4x}{3}-\dfrac{256}{3{{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
To get the final answer we have to differentiate the above equation,
Therefore differentiating above equation w.r.t. x is given by,
\[\therefore F'(x)=\dfrac{d}{dx}\left( \dfrac{4x}{3} \right)-\dfrac{d}{dx}\left( \dfrac{256}{3{{x}^{2}}} \right)-\dfrac{d}{dx}\left[ \dfrac{2F(x)}{{{x}^{2}}} \right]+\dfrac{d}{dx}\left[ \dfrac{2F(4)}{{{x}^{2}}} \right]\]
We will take constants outside the derivative and rewrite the equation,
\[\therefore F'(x)=\dfrac{4}{3}\dfrac{d}{dx}\left( x \right)-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( x \right)=1\] we will get,
\[\therefore F'(x)=\dfrac{4}{3}\times 1-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{n}}} \right)=\dfrac{-n}{{{x}^{n+1}}}\] we will get ………………………………… (4)
\[\therefore F'(x)=\dfrac{4}{3}-\dfrac{256}{3}\times \dfrac{-2}{{{x}^{2+1}}}-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using formula of division rule i. e. \[\dfrac{d}{dx}\left[ \dfrac{u}{v} \right]=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-2\left[ \dfrac{{{x}^{2}}\dfrac{d}{dx}F(x)-F(x)\dfrac{d}{dx}({{x}^{2}})}{{{({{x}^{2}})}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
We can get derivative of remaining terms by using formulae stated earlier in this problem,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)-2F(x)\times (2x)}{{{x}^{4}}}+2F(4)\left[ \dfrac{-2}{{{x}^{3}}} \right]\]
Further algebraic simplification will give,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)}{{{x}^{4}}}+\dfrac{2F(x)\times (2x)}{{{x}^{4}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}+\dfrac{4F(x)}{{{x}^{3}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}\]
Now as we have to find F’(4),
Put, x=4 in above equation,
\[\therefore F'(4)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{4}^{3}}}-\dfrac{2F'(4)}{{{4}^{2}}}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{{{4}^{2}}}=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{64}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{16}=\dfrac{4}{3}+\dfrac{4}{3}\times 2\]
\[\therefore F'(4)\left[ 1+\dfrac{2}{16} \right]=\dfrac{4}{3}+\dfrac{8}{3}\]
\[\therefore F'(4)\left[ \dfrac{16+2}{16} \right]=\dfrac{12}{3}\]
\[\therefore F'(4)\left[ \dfrac{18}{16} \right]=4\]
\[\therefore F'(4)=4\times \dfrac{16}{18}\]
\[\therefore F'(4)=2\times \dfrac{16}{9}\]
\[\therefore F'(4)=\dfrac{32}{9}\]
Therefore option (a) is the correct answer.
Note: Do not use Leibniz Rule to get the derivative of the integral as it makes the problem lengthy and consumes your time.
We will write the given equation and will start integrating directly,
$F(x)=\dfrac{1}{{{x}^{2}}}\int\limits_{4}^{x}{\left( 4{{t}^{2}}-2F'(t) \right)}dt$
We can integrate both the terms separately,
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$………………………………………… (1)
Now, we will integrate the first term as shown below,
\[\int\limits_{4}^{x}{4{{t}^{2}}}dt=4\int\limits_{4}^{x}{{{t}^{2}}}dt\]
We can solve it further by using the formula given below,
Formula:
\[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c\]
By using above formula we can write,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{t}^{2+1}}}{2+1} \right]_{4}^{x}\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{t3}{3} \right]_{4}^{x}\]
We will substitute the limits to get the answer as shown below,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{x}^{3}}}{3}-\dfrac{{{4}^{3}}}{3} \right]\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=\dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]\]…………………………………………. (2)
Also, to find\[\int\limits_{4}^{x}{F'(t)dt}\] we should know the relation between integration and derivative,
If, \[\dfrac{d}{dx}f(x)=f'(x)\] then \[\int{f'(x)}=f(x)\]
Therefore we can write \[\int\limits_{4}^{x}{F'(t)dt}\] by using above formula as,
\[\int\limits_{4}^{x}{F'(t)dt}=\left[ F(t) \right]_{4}^{x}\]
We will substitute the limits to get the answer, as shown below,
\[\therefore \int\limits_{4}^{x}{F'(t)dt}=\left[ F(x)-F(4) \right]\]…………………………………….. (3)
Now put the values of equation (2) and (3) in equation (1)
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]-2\left( F(x)-F(4) \right) \right]\]
Multiply by $\dfrac{4}{3}$ in to the bracket we will get,
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4\times {{x}^{3}}}{3}-\dfrac{4\times {{4}^{3}}}{3}-2F(x)+2F(4) \right]\]
Multiplying by \[\dfrac{1}{{{x}^{2}}}\] in the bracket we will get,
\[\therefore F(x)=\left[ \dfrac{4\times {{x}^{3}}}{3\times {{x}^{2}}}-\dfrac{4\times {{4}^{3}}}{3\times {{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
\[\therefore F(x)=\left[ \dfrac{4x}{3}-\dfrac{256}{3{{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
To get the final answer we have to differentiate the above equation,
Therefore differentiating above equation w.r.t. x is given by,
\[\therefore F'(x)=\dfrac{d}{dx}\left( \dfrac{4x}{3} \right)-\dfrac{d}{dx}\left( \dfrac{256}{3{{x}^{2}}} \right)-\dfrac{d}{dx}\left[ \dfrac{2F(x)}{{{x}^{2}}} \right]+\dfrac{d}{dx}\left[ \dfrac{2F(4)}{{{x}^{2}}} \right]\]
We will take constants outside the derivative and rewrite the equation,
\[\therefore F'(x)=\dfrac{4}{3}\dfrac{d}{dx}\left( x \right)-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( x \right)=1\] we will get,
\[\therefore F'(x)=\dfrac{4}{3}\times 1-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{n}}} \right)=\dfrac{-n}{{{x}^{n+1}}}\] we will get ………………………………… (4)
\[\therefore F'(x)=\dfrac{4}{3}-\dfrac{256}{3}\times \dfrac{-2}{{{x}^{2+1}}}-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using formula of division rule i. e. \[\dfrac{d}{dx}\left[ \dfrac{u}{v} \right]=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-2\left[ \dfrac{{{x}^{2}}\dfrac{d}{dx}F(x)-F(x)\dfrac{d}{dx}({{x}^{2}})}{{{({{x}^{2}})}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
We can get derivative of remaining terms by using formulae stated earlier in this problem,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)-2F(x)\times (2x)}{{{x}^{4}}}+2F(4)\left[ \dfrac{-2}{{{x}^{3}}} \right]\]
Further algebraic simplification will give,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)}{{{x}^{4}}}+\dfrac{2F(x)\times (2x)}{{{x}^{4}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}+\dfrac{4F(x)}{{{x}^{3}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}\]
Now as we have to find F’(4),
Put, x=4 in above equation,
\[\therefore F'(4)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{4}^{3}}}-\dfrac{2F'(4)}{{{4}^{2}}}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{{{4}^{2}}}=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{64}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{16}=\dfrac{4}{3}+\dfrac{4}{3}\times 2\]
\[\therefore F'(4)\left[ 1+\dfrac{2}{16} \right]=\dfrac{4}{3}+\dfrac{8}{3}\]
\[\therefore F'(4)\left[ \dfrac{16+2}{16} \right]=\dfrac{12}{3}\]
\[\therefore F'(4)\left[ \dfrac{18}{16} \right]=4\]
\[\therefore F'(4)=4\times \dfrac{16}{18}\]
\[\therefore F'(4)=2\times \dfrac{16}{9}\]
\[\therefore F'(4)=\dfrac{32}{9}\]
Therefore option (a) is the correct answer.
Note: Do not use Leibniz Rule to get the derivative of the integral as it makes the problem lengthy and consumes your time.
Recently Updated Pages
Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts
Ray optics is valid when characteristic dimensions class 12 physics CBSE

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

Alfred Wallace worked in A Galapagos Island B Australian class 12 biology CBSE

Imagine an atom made up of a proton and a hypothetical class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

How do you define least count for Vernier Calipers class 12 physics CBSE

Why is the cell called the structural and functional class 12 biology CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main
