
If$F(x)=\dfrac{1}{{{x}^{2}}}\int\limits_{4}^{x}{\left( 4{{t}^{2}}-2F'(t) \right)}dt$, then F’(4) equals
(a) $\dfrac{32}{9}$
(b) $\dfrac{64}{3}$
(c) $\dfrac{64}{9}$
(D) \[\dfrac{32}{3}\]
Answer
226.8k+ views
Hint: Integrate the problem directly and take F(t) as the integration of F’(t). After finding the integration, differentiate it to find the solution.
We will write the given equation and will start integrating directly,
$F(x)=\dfrac{1}{{{x}^{2}}}\int\limits_{4}^{x}{\left( 4{{t}^{2}}-2F'(t) \right)}dt$
We can integrate both the terms separately,
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$………………………………………… (1)
Now, we will integrate the first term as shown below,
\[\int\limits_{4}^{x}{4{{t}^{2}}}dt=4\int\limits_{4}^{x}{{{t}^{2}}}dt\]
We can solve it further by using the formula given below,
Formula:
\[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c\]
By using above formula we can write,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{t}^{2+1}}}{2+1} \right]_{4}^{x}\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{t3}{3} \right]_{4}^{x}\]
We will substitute the limits to get the answer as shown below,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{x}^{3}}}{3}-\dfrac{{{4}^{3}}}{3} \right]\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=\dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]\]…………………………………………. (2)
Also, to find\[\int\limits_{4}^{x}{F'(t)dt}\] we should know the relation between integration and derivative,
If, \[\dfrac{d}{dx}f(x)=f'(x)\] then \[\int{f'(x)}=f(x)\]
Therefore we can write \[\int\limits_{4}^{x}{F'(t)dt}\] by using above formula as,
\[\int\limits_{4}^{x}{F'(t)dt}=\left[ F(t) \right]_{4}^{x}\]
We will substitute the limits to get the answer, as shown below,
\[\therefore \int\limits_{4}^{x}{F'(t)dt}=\left[ F(x)-F(4) \right]\]…………………………………….. (3)
Now put the values of equation (2) and (3) in equation (1)
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]-2\left( F(x)-F(4) \right) \right]\]
Multiply by $\dfrac{4}{3}$ in to the bracket we will get,
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4\times {{x}^{3}}}{3}-\dfrac{4\times {{4}^{3}}}{3}-2F(x)+2F(4) \right]\]
Multiplying by \[\dfrac{1}{{{x}^{2}}}\] in the bracket we will get,
\[\therefore F(x)=\left[ \dfrac{4\times {{x}^{3}}}{3\times {{x}^{2}}}-\dfrac{4\times {{4}^{3}}}{3\times {{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
\[\therefore F(x)=\left[ \dfrac{4x}{3}-\dfrac{256}{3{{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
To get the final answer we have to differentiate the above equation,
Therefore differentiating above equation w.r.t. x is given by,
\[\therefore F'(x)=\dfrac{d}{dx}\left( \dfrac{4x}{3} \right)-\dfrac{d}{dx}\left( \dfrac{256}{3{{x}^{2}}} \right)-\dfrac{d}{dx}\left[ \dfrac{2F(x)}{{{x}^{2}}} \right]+\dfrac{d}{dx}\left[ \dfrac{2F(4)}{{{x}^{2}}} \right]\]
We will take constants outside the derivative and rewrite the equation,
\[\therefore F'(x)=\dfrac{4}{3}\dfrac{d}{dx}\left( x \right)-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( x \right)=1\] we will get,
\[\therefore F'(x)=\dfrac{4}{3}\times 1-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{n}}} \right)=\dfrac{-n}{{{x}^{n+1}}}\] we will get ………………………………… (4)
\[\therefore F'(x)=\dfrac{4}{3}-\dfrac{256}{3}\times \dfrac{-2}{{{x}^{2+1}}}-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using formula of division rule i. e. \[\dfrac{d}{dx}\left[ \dfrac{u}{v} \right]=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-2\left[ \dfrac{{{x}^{2}}\dfrac{d}{dx}F(x)-F(x)\dfrac{d}{dx}({{x}^{2}})}{{{({{x}^{2}})}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
We can get derivative of remaining terms by using formulae stated earlier in this problem,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)-2F(x)\times (2x)}{{{x}^{4}}}+2F(4)\left[ \dfrac{-2}{{{x}^{3}}} \right]\]
Further algebraic simplification will give,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)}{{{x}^{4}}}+\dfrac{2F(x)\times (2x)}{{{x}^{4}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}+\dfrac{4F(x)}{{{x}^{3}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}\]
Now as we have to find F’(4),
Put, x=4 in above equation,
\[\therefore F'(4)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{4}^{3}}}-\dfrac{2F'(4)}{{{4}^{2}}}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{{{4}^{2}}}=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{64}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{16}=\dfrac{4}{3}+\dfrac{4}{3}\times 2\]
\[\therefore F'(4)\left[ 1+\dfrac{2}{16} \right]=\dfrac{4}{3}+\dfrac{8}{3}\]
\[\therefore F'(4)\left[ \dfrac{16+2}{16} \right]=\dfrac{12}{3}\]
\[\therefore F'(4)\left[ \dfrac{18}{16} \right]=4\]
\[\therefore F'(4)=4\times \dfrac{16}{18}\]
\[\therefore F'(4)=2\times \dfrac{16}{9}\]
\[\therefore F'(4)=\dfrac{32}{9}\]
Therefore option (a) is the correct answer.
Note: Do not use Leibniz Rule to get the derivative of the integral as it makes the problem lengthy and consumes your time.
We will write the given equation and will start integrating directly,
$F(x)=\dfrac{1}{{{x}^{2}}}\int\limits_{4}^{x}{\left( 4{{t}^{2}}-2F'(t) \right)}dt$
We can integrate both the terms separately,
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$………………………………………… (1)
Now, we will integrate the first term as shown below,
\[\int\limits_{4}^{x}{4{{t}^{2}}}dt=4\int\limits_{4}^{x}{{{t}^{2}}}dt\]
We can solve it further by using the formula given below,
Formula:
\[\int{{{x}^{n}}}dx=\dfrac{{{x}^{n+1}}}{n+1}+c\]
By using above formula we can write,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{t}^{2+1}}}{2+1} \right]_{4}^{x}\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{t3}{3} \right]_{4}^{x}\]
We will substitute the limits to get the answer as shown below,
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=4\times \left[ \dfrac{{{x}^{3}}}{3}-\dfrac{{{4}^{3}}}{3} \right]\]
\[\therefore \int\limits_{4}^{x}{4{{t}^{2}}}dt=\dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]\]…………………………………………. (2)
Also, to find\[\int\limits_{4}^{x}{F'(t)dt}\] we should know the relation between integration and derivative,
If, \[\dfrac{d}{dx}f(x)=f'(x)\] then \[\int{f'(x)}=f(x)\]
Therefore we can write \[\int\limits_{4}^{x}{F'(t)dt}\] by using above formula as,
\[\int\limits_{4}^{x}{F'(t)dt}=\left[ F(t) \right]_{4}^{x}\]
We will substitute the limits to get the answer, as shown below,
\[\therefore \int\limits_{4}^{x}{F'(t)dt}=\left[ F(x)-F(4) \right]\]…………………………………….. (3)
Now put the values of equation (2) and (3) in equation (1)
$\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \int\limits_{4}^{x}{4{{t}^{2}}}dt-2\int\limits_{4}^{x}{F'(t)dt} \right]$
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4}{3}\times \left[ {{x}^{3}}-{{4}^{3}} \right]-2\left( F(x)-F(4) \right) \right]\]
Multiply by $\dfrac{4}{3}$ in to the bracket we will get,
\[\therefore F(x)=\dfrac{1}{{{x}^{2}}}\left[ \dfrac{4\times {{x}^{3}}}{3}-\dfrac{4\times {{4}^{3}}}{3}-2F(x)+2F(4) \right]\]
Multiplying by \[\dfrac{1}{{{x}^{2}}}\] in the bracket we will get,
\[\therefore F(x)=\left[ \dfrac{4\times {{x}^{3}}}{3\times {{x}^{2}}}-\dfrac{4\times {{4}^{3}}}{3\times {{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
\[\therefore F(x)=\left[ \dfrac{4x}{3}-\dfrac{256}{3{{x}^{2}}}-\dfrac{2F(x)}{{{x}^{2}}}+\dfrac{2F(4)}{{{x}^{2}}} \right]\]
To get the final answer we have to differentiate the above equation,
Therefore differentiating above equation w.r.t. x is given by,
\[\therefore F'(x)=\dfrac{d}{dx}\left( \dfrac{4x}{3} \right)-\dfrac{d}{dx}\left( \dfrac{256}{3{{x}^{2}}} \right)-\dfrac{d}{dx}\left[ \dfrac{2F(x)}{{{x}^{2}}} \right]+\dfrac{d}{dx}\left[ \dfrac{2F(4)}{{{x}^{2}}} \right]\]
We will take constants outside the derivative and rewrite the equation,
\[\therefore F'(x)=\dfrac{4}{3}\dfrac{d}{dx}\left( x \right)-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( x \right)=1\] we will get,
\[\therefore F'(x)=\dfrac{4}{3}\times 1-\dfrac{256}{3}\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{2}}} \right)-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using the formula: \[\dfrac{d}{dx}\left( \dfrac{1}{{{x}^{n}}} \right)=\dfrac{-n}{{{x}^{n+1}}}\] we will get ………………………………… (4)
\[\therefore F'(x)=\dfrac{4}{3}-\dfrac{256}{3}\times \dfrac{-2}{{{x}^{2+1}}}-2\dfrac{d}{dx}\left[ \dfrac{F(x)}{{{x}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
By using formula of division rule i. e. \[\dfrac{d}{dx}\left[ \dfrac{u}{v} \right]=\dfrac{v\dfrac{d}{dx}u-u\dfrac{d}{dx}v}{{{v}^{2}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-2\left[ \dfrac{{{x}^{2}}\dfrac{d}{dx}F(x)-F(x)\dfrac{d}{dx}({{x}^{2}})}{{{({{x}^{2}})}^{2}}} \right]+2F(4)\dfrac{d}{dx}\left[ \dfrac{1}{{{x}^{2}}} \right]\]
We can get derivative of remaining terms by using formulae stated earlier in this problem,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)-2F(x)\times (2x)}{{{x}^{4}}}+2F(4)\left[ \dfrac{-2}{{{x}^{3}}} \right]\]
Further algebraic simplification will give,
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2{{x}^{2}}\times F'(x)}{{{x}^{4}}}+\dfrac{2F(x)\times (2x)}{{{x}^{4}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}+\dfrac{4F(x)}{{{x}^{3}}}-\dfrac{4F(4)}{{{x}^{3}}}\]
\[\therefore F'(x)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{x}^{3}}}-\dfrac{2F'(x)}{{{x}^{2}}}\]
Now as we have to find F’(4),
Put, x=4 in above equation,
\[\therefore F'(4)=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{{{4}^{3}}}-\dfrac{2F'(4)}{{{4}^{2}}}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{{{4}^{2}}}=\dfrac{4}{3}+\dfrac{256}{3}\times \dfrac{2}{64}\]
\[\therefore F'(4)+\dfrac{2F'(4)}{16}=\dfrac{4}{3}+\dfrac{4}{3}\times 2\]
\[\therefore F'(4)\left[ 1+\dfrac{2}{16} \right]=\dfrac{4}{3}+\dfrac{8}{3}\]
\[\therefore F'(4)\left[ \dfrac{16+2}{16} \right]=\dfrac{12}{3}\]
\[\therefore F'(4)\left[ \dfrac{18}{16} \right]=4\]
\[\therefore F'(4)=4\times \dfrac{16}{18}\]
\[\therefore F'(4)=2\times \dfrac{16}{9}\]
\[\therefore F'(4)=\dfrac{32}{9}\]
Therefore option (a) is the correct answer.
Note: Do not use Leibniz Rule to get the derivative of the integral as it makes the problem lengthy and consumes your time.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

