
If the total energy of the system of particles remains constant, a decrease in potential energy will lead to:
A) An increase in kinetic energy
B) A decrease in kinetic energy
C) Kinetic energy becoming zero
D) No change in kinetic energy
Answer
233.1k+ views
Hint: Total energy of a system basically comprises potential energy and kinetic energy. Also, the law of conservation of energy states that the total energy of an isolated system remains constant. Any decrease in one component of energy will increase the other component of energy so as the total energy remains constant.
Complete step by step solution:
It must be noted, the system in given is an isolated system although it is not mentioned. In an isolated system, there is no exchange of heat between the system and the surrounding. Now, let’s see what are the energies which sum up as total energy of the given system or any system.
Any system has basically two types of Energies:
Kinetic energy: The energy that a body has by virtue of its motion. This implies any body in motion will have kinetic energy. For example, a cricket ball when hit by a bat has kinetic energy.
Potential energy: Potential energy is defined as the energy which is conserved in a body by virtue of its position. This implies that an object which is at some height will have some potential energy conserved in it.
As we have already discussed in the hint, the total energy of an isolated system is constant. The total energy of a system is the sum of the potential energy and the kinetic energy. So, a decrease in kinetic energy will lead to increase in potential energy.
Therefore, option A is the correct option.
Note: Please remember that the magnitude of gravitational potential energy is always negative. Do remember that since the magnitude of potential energy is negative, the total energy of a system can be zero as well. Potential energy can be positive only when the force acting on it is repulsive in nature.
Complete step by step solution:
It must be noted, the system in given is an isolated system although it is not mentioned. In an isolated system, there is no exchange of heat between the system and the surrounding. Now, let’s see what are the energies which sum up as total energy of the given system or any system.
Any system has basically two types of Energies:
Kinetic energy: The energy that a body has by virtue of its motion. This implies any body in motion will have kinetic energy. For example, a cricket ball when hit by a bat has kinetic energy.
Potential energy: Potential energy is defined as the energy which is conserved in a body by virtue of its position. This implies that an object which is at some height will have some potential energy conserved in it.
As we have already discussed in the hint, the total energy of an isolated system is constant. The total energy of a system is the sum of the potential energy and the kinetic energy. So, a decrease in kinetic energy will lead to increase in potential energy.
Therefore, option A is the correct option.
Note: Please remember that the magnitude of gravitational potential energy is always negative. Do remember that since the magnitude of potential energy is negative, the total energy of a system can be zero as well. Potential energy can be positive only when the force acting on it is repulsive in nature.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

