If the three vectors $\overrightarrow{a}+\overrightarrow{b}$, $\overrightarrow{b}+\overrightarrow{c}$ and $\overrightarrow{c}+\overrightarrow{a}$ are coterminous edges of a parallelepiped then its volume is _.
A) $3\left[ \overrightarrow{a}\overrightarrow{c}\overrightarrow{b} \right]$
B) $0$
C) $2\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]$
D) $4\left[ \overrightarrow{b}\overrightarrow{a}\overrightarrow{c} \right]$
Last updated date: 17th Mar 2023
•
Total views: 303.6k
•
Views today: 2.83k
Answer
303.6k+ views
Hint: Scalar triple product can directly be applied on the given sides of parallelepiped. Drawing sketches for parallelepiped with given coterminous edges might lead to an error as they are given in the form of sum of two vectors.
Complete step-by-step answer:
Here, we have a parallelepiped with $\overrightarrow{a}+\overrightarrow{b}$, $\overrightarrow{b}+\overrightarrow{c}$ and $\overrightarrow{c}+\overrightarrow{a}$ as their coterminous edges.
And coterminous edges mean the edges of a figure having or sharing the same boundaries.
Now, volume of a parallelepiped with their edges as let’s say $\overrightarrow{x},\overrightarrow{y}$ and $\overrightarrow{z}$ is defined as the area of the base times the height., $V=\left[ \overrightarrow{x}\overrightarrow{y}\overrightarrow{z} \right]$,
\[\begin{align}
& \Rightarrow V=\left[ \overrightarrow{x}\overrightarrow{y}\overrightarrow{z} \right] \\
& \Rightarrow V=\overrightarrow{x}\cdot \left( \overrightarrow{y}\times \overrightarrow{z} \right)=\left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}...\text{ }\left( 1 \right) \\
\end{align}\]
Which is also known as the scalar-triple product and it is further defined as,
\[\Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left| \begin{matrix}
{{z}_{1}} & {{z}_{2}} & {{z}_{3}} \\
{{x}_{1}} & {{x}_{2}} & {{x}_{3}} \\
{{y}_{1}} & {{y}_{2}} & {{y}_{3}} \\
\end{matrix} \right|...\text{ }\left( 2 \right)\]
where $\overrightarrow{x}=\left( {{x}_{1}},{{x}_{2}},{{x}_{3}} \right)$, $\overrightarrow{y}=\left( {{y}_{1}},{{y}_{2}},{{y}_{3}} \right)$ and \[\overrightarrow{z}=\left( {{z}_{1}},{{z}_{2}},{{z}_{3}} \right)\] defined in vector form.
Thus, from given conditions, we have $\overrightarrow{x}=\overrightarrow{a}+\overrightarrow{b}$, $\overrightarrow{y}=\overrightarrow{b}+\overrightarrow{c}$ and $\overrightarrow{z}=\overrightarrow{c}+\overrightarrow{a}$.
Substituting these values in equation (2), we get
\[\Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \left( \overrightarrow{a}+\overrightarrow{b} \right)\times \left( \overrightarrow{b}+\overrightarrow{c} \right) \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right)\]
Applying the product of vectors, we get
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \left( \overrightarrow{b}+\overrightarrow{c} \right)+\overrightarrow{b}\times \left( \overrightarrow{b}+\overrightarrow{c} \right) \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
\end{align}\]
Now, on applying properties of cross product of two parallel vectors, i.e.,
\[\Rightarrow \overrightarrow{b}\times \overrightarrow{b}=\left| \overrightarrow{b} \right|\left| \overrightarrow{b} \right|\sin {{0}^{\circ }}=0\]
Substituting this value in above equation, we get
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
\end{align}\]
Now, applying scalar product of vectors, we get
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{a} \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+0\cdot \overrightarrow{c}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{a}+0\cdot \overrightarrow{a}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{a}
\end{align}\]
Using properties of scalar triple product of vectors, we have
\[\Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}=\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]\]
And, \[\Rightarrow \left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}=\left| \overrightarrow{a}\times \overrightarrow{c} \right|\left| \overrightarrow{c} \right|\cos {{90}^{\circ }}=0\]
Thus, from above equation, we have
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+0\cdot \overrightarrow{c}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{a}+0\cdot \overrightarrow{a}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{a} \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]+0+0+0+0+0+0+\left[ \overrightarrow{b}\overrightarrow{c}\overrightarrow{a} \right]
\end{align}\]
Also, from properties of scalar triple product, we have \[\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]=\left[ \overrightarrow{b}\overrightarrow{c}\overrightarrow{a} \right]\]
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]+0+0+0+0+0+0+\left[ \overrightarrow{b}\overrightarrow{c}\overrightarrow{a} \right] \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=2\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]
\end{align}\]
Hence, the volume of parallelepiped = $V=2\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]$, thus option [C] is correct.
Note: As per question, the edges of parallelepiped are given as the sum of two vectors. So, calculation of scalar triple product for volume of parallelepiped becomes quite complex. Keeping the angle between the vectors in mind might ease the calculations, in a product.
Complete step-by-step answer:
Here, we have a parallelepiped with $\overrightarrow{a}+\overrightarrow{b}$, $\overrightarrow{b}+\overrightarrow{c}$ and $\overrightarrow{c}+\overrightarrow{a}$ as their coterminous edges.
And coterminous edges mean the edges of a figure having or sharing the same boundaries.
Now, volume of a parallelepiped with their edges as let’s say $\overrightarrow{x},\overrightarrow{y}$ and $\overrightarrow{z}$ is defined as the area of the base times the height., $V=\left[ \overrightarrow{x}\overrightarrow{y}\overrightarrow{z} \right]$,
\[\begin{align}
& \Rightarrow V=\left[ \overrightarrow{x}\overrightarrow{y}\overrightarrow{z} \right] \\
& \Rightarrow V=\overrightarrow{x}\cdot \left( \overrightarrow{y}\times \overrightarrow{z} \right)=\left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}...\text{ }\left( 1 \right) \\
\end{align}\]
Which is also known as the scalar-triple product and it is further defined as,
\[\Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left| \begin{matrix}
{{z}_{1}} & {{z}_{2}} & {{z}_{3}} \\
{{x}_{1}} & {{x}_{2}} & {{x}_{3}} \\
{{y}_{1}} & {{y}_{2}} & {{y}_{3}} \\
\end{matrix} \right|...\text{ }\left( 2 \right)\]
where $\overrightarrow{x}=\left( {{x}_{1}},{{x}_{2}},{{x}_{3}} \right)$, $\overrightarrow{y}=\left( {{y}_{1}},{{y}_{2}},{{y}_{3}} \right)$ and \[\overrightarrow{z}=\left( {{z}_{1}},{{z}_{2}},{{z}_{3}} \right)\] defined in vector form.
Thus, from given conditions, we have $\overrightarrow{x}=\overrightarrow{a}+\overrightarrow{b}$, $\overrightarrow{y}=\overrightarrow{b}+\overrightarrow{c}$ and $\overrightarrow{z}=\overrightarrow{c}+\overrightarrow{a}$.
Substituting these values in equation (2), we get
\[\Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \left( \overrightarrow{a}+\overrightarrow{b} \right)\times \left( \overrightarrow{b}+\overrightarrow{c} \right) \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right)\]
Applying the product of vectors, we get
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \left( \overrightarrow{b}+\overrightarrow{c} \right)+\overrightarrow{b}\times \left( \overrightarrow{b}+\overrightarrow{c} \right) \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
\end{align}\]
Now, on applying properties of cross product of two parallel vectors, i.e.,
\[\Rightarrow \overrightarrow{b}\times \overrightarrow{b}=\left| \overrightarrow{b} \right|\left| \overrightarrow{b} \right|\sin {{0}^{\circ }}=0\]
Substituting this value in above equation, we get
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+\overrightarrow{b}\times \overrightarrow{b}+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
\end{align}\]
Now, applying scalar product of vectors, we get
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \left( \overrightarrow{c}+\overrightarrow{a} \right) \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{b}+\overrightarrow{a}\times \overrightarrow{c}+0+\overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{a} \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+0\cdot \overrightarrow{c}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{a}+0\cdot \overrightarrow{a}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{a}
\end{align}\]
Using properties of scalar triple product of vectors, we have
\[\Rightarrow \left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}=\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]\]
And, \[\Rightarrow \left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}=\left| \overrightarrow{a}\times \overrightarrow{c} \right|\left| \overrightarrow{c} \right|\cos {{90}^{\circ }}=0\]
Thus, from above equation, we have
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+0\cdot \overrightarrow{c}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{c}+\left( \overrightarrow{a}\times \overrightarrow{b} \right)\cdot \overrightarrow{a}+\left( \overrightarrow{a}\times \overrightarrow{c} \right)\cdot \overrightarrow{a}+0\cdot \overrightarrow{a}+\left( \overrightarrow{b}\times \overrightarrow{c} \right)\cdot \overrightarrow{a} \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]+0+0+0+0+0+0+\left[ \overrightarrow{b}\overrightarrow{c}\overrightarrow{a} \right]
\end{align}\]
Also, from properties of scalar triple product, we have \[\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]=\left[ \overrightarrow{b}\overrightarrow{c}\overrightarrow{a} \right]\]
\[\begin{align}
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]+0+0+0+0+0+0+\left[ \overrightarrow{b}\overrightarrow{c}\overrightarrow{a} \right] \\
& \Rightarrow \left( \overrightarrow{x}\times \overrightarrow{y} \right)\cdot \overrightarrow{z}=2\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]
\end{align}\]
Hence, the volume of parallelepiped = $V=2\left[ \overrightarrow{a}\overrightarrow{b}\overrightarrow{c} \right]$, thus option [C] is correct.
Note: As per question, the edges of parallelepiped are given as the sum of two vectors. So, calculation of scalar triple product for volume of parallelepiped becomes quite complex. Keeping the angle between the vectors in mind might ease the calculations, in a product.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
