
If the area bounded by \[y = {x^2} + 2x - 3\]and the line \[y = kx + 1\]is least, then its least area is
(a)$\dfrac{{64}}{3}sq.units$
(b) $\dfrac{{32}}{3}sq.units$
(c)$\dfrac{{25}}{3}sq.units$
(d)None of the above
Answer
218.4k+ views
Hint: Find the points of intersection of the given curves and integrate to find the area bounded by the curves. Then, substitute the least possible value for $k$to get the least area.
The equations given are
\[y = {x^2} + 2x - 3\] …(1)
\[y = kx + 1\] …(2)
Put (2) in (1),
\[kx + 1 = {x^2} + 2x - 3\]
\[{x^2} + \left( {2 - k} \right)x - 4 = 0\] …(3)
Let $x_1$and $x_2$be the roots of equation (3)
From (3),
$x_1 + x_2 = - \left( {2 - k} \right) = k - 2$ …(4)
$x_1 \times x_2 = - 4$ …(5)
Required area\[ = \int\limits_{x_1}^{x_2} {\left[ {\left( {kx + 1} \right) - \left( {{x^2} + 2x - 3} \right)} \right]dx} \]
$
= \int\limits_{x_1}^{x_2} {\left[ {kx - 2x - {x^2} + 4} \right]dx} \\
= \left[ {\left( {k - 2} \right)\dfrac{{{x^2}}}{2} - \dfrac{{{x^3}}}{3} + 4x} \right]_{x_1}^{x_2} \\
= \left[ {\left( {k - 2} \right)\dfrac{{x_2{^2}}}{2} - \dfrac{{x_2{^3}}}{3} + 4\left( {x_2} \right) - \left\{ {\left( {k - 2} \right)\dfrac{{x_1{^2}}}{2} - \dfrac{{x_1{^3}}}{3} + 4\left( {x_1} \right)} \right\}} \right] \\
= \left[ {\left( {k - 2} \right)\dfrac{{x_2{^2}}}{2} - \left( {k - 2} \right)\dfrac{{x_1{^2}}}{2} - \dfrac{{x_2{^3}}}{3} + \dfrac{{x_1{^3}}}{3} + 4x_2 + 4x_1} \right] \\
= \left[ {\dfrac{{\left( {k - 2} \right)}}{2}\left( {x_2{^2} - x_1{^2}} \right) - \dfrac{1}{3}\left( {x_2{^3} - x_1{^3}} \right) + 4\left( {x_2 - x_1} \right)} \right] \\
$
We know that $\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)$and $\left( {{a^3} - {b^3}} \right) = {\left( {a - b} \right)^3} + 3ab\left( {a - b} \right)$
Using these, we get
\[ = \left[ {\dfrac{{\left( {k - 2} \right)}}{2}\left( {x_2 + x_1} \right)\left( {x_2 - x_1} \right) - \dfrac{1}{3}\left\{ {{{\left( {x_2 - x_1} \right)}^3} + 3x_1x_2\left( {x_2 - x_1} \right)} \right\} + 4\left( {x_2 - x_1} \right)} \right]\]
Using equations (4) and (5) and taking $\left( {x_2 - x_1} \right)$ common out, we get
$
= \left[ {\dfrac{{\left( {k - 2} \right)}}{2}\left( {x_2 + x_1} \right)\left( {x_2 - x_1} \right) - \dfrac{1}{3}\left\{ {{{\left( {x_2 - x_1} \right)}^3} + 3x_1x_2\left( {x_2 - x_1} \right)} \right\} + 4\left( {x_2 - x_1} \right)} \right] \\
= \left( {x_2 - x_1} \right)\left[ {\dfrac{{{{\left( {k - 2} \right)}^2}}}{2} - \dfrac{1}{3}\left\{ {{{\left( {x_2 - x_1} \right)}^2} + 3x_1x_2} \right\} + 4} \right] \\
= \left( {x_2 - x_1} \right)\left[ {\dfrac{{{{\left( {k - 2} \right)}^2}}}{2} - \dfrac{1}{3}\left\{ {{{\left( {x_2 - x_1} \right)}^2} + 3x_1x_2} \right\} + 4} \right] \\
= \left( {x_2 - x_1} \right)\left[ {\dfrac{{{{\left( {k - 2} \right)}^2}}}{2} - \dfrac{1}{3}\left\{ {{{\left( {x_2 - x_1} \right)}^2} - 4x_1x_2 + 3x_1x_2} \right\} + 4} \right] \\
= \left( {x_2 - x_1} \right)\left[ {\dfrac{{{{\left( {k - 2} \right)}^2}}}{2} - \dfrac{1}{3}\left\{ {{{\left( {k - 2} \right)}^2} + 16 - 12} \right\} + 4} \right] \\
= \left( {x_2 - x_1} \right)\left[ {\dfrac{{{{\left( {k - 2} \right)}^2}}}{2} - \dfrac{{{{\left( {k - 2} \right)}^2}}}{3} - \dfrac{4}{3} + 4} \right] \\
= \left( {x_2 - x_1} \right)\left[ {\dfrac{{{{\left( {k - 2} \right)}^2}}}{2} - \dfrac{{{{\left( {k - 2} \right)}^2}}}{3} + \dfrac{8}{3}} \right] \\
$
We know that \[{\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab,\left( {a - b} \right) = \sqrt {{{\left( {a + b} \right)}^2} - 4ab} \]
$
= \sqrt {{{(k - 2)}^2} + 16} \left[ {\dfrac{{{{\left( {k - 2} \right)}^2}}}{2} - \dfrac{{{{\left( {k - 2} \right)}^2}}}{3} + \dfrac{8}{3}} \right] \\
= \sqrt {{{\left( {k - 2} \right)}^2} + 16} \left[ {\dfrac{{{{\left( {k - 2} \right)}^2} + 16}}{6}} \right] \\
= \dfrac{1}{6}{\left[ {{{\left( {k - 2} \right)}^2} + 16} \right]^{\dfrac{1}{2} + 1}} \\
= \dfrac{1}{6}{\left[ {{{\left( {k - 2} \right)}^2} + 16} \right]^{\dfrac{3}{2}}} \\
$
To get the least area, we must substitute $k = 2$in order for that term to get cancelled in the required area equation.
Required area when $k = 2$\[ = \dfrac{1}{6}{\left[ {{{\left( {2 - 2} \right)}^2} + 16} \right]^{\dfrac{3}{2}}}\]
$
= \dfrac{1}{6}\left( {\sqrt {{{16}^3}} } \right) \\
= \dfrac{{64}}{6} \\
= \dfrac{{32}}{3}sq.units \\
$
Hence, the correct answer is option (b)
Note: From the two given equations, we get a single equation and find the sum of the roots and product of the roots in the form of two equations to be substituted in the later part of the solution. Then the integration is done to find the required bounded area and the unknown values are substituted. The least possible value for $k$ is substituted to get the least possible area.
The equations given are
\[y = {x^2} + 2x - 3\] …(1)
\[y = kx + 1\] …(2)
Put (2) in (1),
\[kx + 1 = {x^2} + 2x - 3\]
\[{x^2} + \left( {2 - k} \right)x - 4 = 0\] …(3)
Let $x_1$and $x_2$be the roots of equation (3)
From (3),
$x_1 + x_2 = - \left( {2 - k} \right) = k - 2$ …(4)
$x_1 \times x_2 = - 4$ …(5)
Required area\[ = \int\limits_{x_1}^{x_2} {\left[ {\left( {kx + 1} \right) - \left( {{x^2} + 2x - 3} \right)} \right]dx} \]
$
= \int\limits_{x_1}^{x_2} {\left[ {kx - 2x - {x^2} + 4} \right]dx} \\
= \left[ {\left( {k - 2} \right)\dfrac{{{x^2}}}{2} - \dfrac{{{x^3}}}{3} + 4x} \right]_{x_1}^{x_2} \\
= \left[ {\left( {k - 2} \right)\dfrac{{x_2{^2}}}{2} - \dfrac{{x_2{^3}}}{3} + 4\left( {x_2} \right) - \left\{ {\left( {k - 2} \right)\dfrac{{x_1{^2}}}{2} - \dfrac{{x_1{^3}}}{3} + 4\left( {x_1} \right)} \right\}} \right] \\
= \left[ {\left( {k - 2} \right)\dfrac{{x_2{^2}}}{2} - \left( {k - 2} \right)\dfrac{{x_1{^2}}}{2} - \dfrac{{x_2{^3}}}{3} + \dfrac{{x_1{^3}}}{3} + 4x_2 + 4x_1} \right] \\
= \left[ {\dfrac{{\left( {k - 2} \right)}}{2}\left( {x_2{^2} - x_1{^2}} \right) - \dfrac{1}{3}\left( {x_2{^3} - x_1{^3}} \right) + 4\left( {x_2 - x_1} \right)} \right] \\
$
We know that $\left( {{a^2} - {b^2}} \right) = \left( {a + b} \right)\left( {a - b} \right)$and $\left( {{a^3} - {b^3}} \right) = {\left( {a - b} \right)^3} + 3ab\left( {a - b} \right)$
Using these, we get
\[ = \left[ {\dfrac{{\left( {k - 2} \right)}}{2}\left( {x_2 + x_1} \right)\left( {x_2 - x_1} \right) - \dfrac{1}{3}\left\{ {{{\left( {x_2 - x_1} \right)}^3} + 3x_1x_2\left( {x_2 - x_1} \right)} \right\} + 4\left( {x_2 - x_1} \right)} \right]\]
Using equations (4) and (5) and taking $\left( {x_2 - x_1} \right)$ common out, we get
$
= \left[ {\dfrac{{\left( {k - 2} \right)}}{2}\left( {x_2 + x_1} \right)\left( {x_2 - x_1} \right) - \dfrac{1}{3}\left\{ {{{\left( {x_2 - x_1} \right)}^3} + 3x_1x_2\left( {x_2 - x_1} \right)} \right\} + 4\left( {x_2 - x_1} \right)} \right] \\
= \left( {x_2 - x_1} \right)\left[ {\dfrac{{{{\left( {k - 2} \right)}^2}}}{2} - \dfrac{1}{3}\left\{ {{{\left( {x_2 - x_1} \right)}^2} + 3x_1x_2} \right\} + 4} \right] \\
= \left( {x_2 - x_1} \right)\left[ {\dfrac{{{{\left( {k - 2} \right)}^2}}}{2} - \dfrac{1}{3}\left\{ {{{\left( {x_2 - x_1} \right)}^2} + 3x_1x_2} \right\} + 4} \right] \\
= \left( {x_2 - x_1} \right)\left[ {\dfrac{{{{\left( {k - 2} \right)}^2}}}{2} - \dfrac{1}{3}\left\{ {{{\left( {x_2 - x_1} \right)}^2} - 4x_1x_2 + 3x_1x_2} \right\} + 4} \right] \\
= \left( {x_2 - x_1} \right)\left[ {\dfrac{{{{\left( {k - 2} \right)}^2}}}{2} - \dfrac{1}{3}\left\{ {{{\left( {k - 2} \right)}^2} + 16 - 12} \right\} + 4} \right] \\
= \left( {x_2 - x_1} \right)\left[ {\dfrac{{{{\left( {k - 2} \right)}^2}}}{2} - \dfrac{{{{\left( {k - 2} \right)}^2}}}{3} - \dfrac{4}{3} + 4} \right] \\
= \left( {x_2 - x_1} \right)\left[ {\dfrac{{{{\left( {k - 2} \right)}^2}}}{2} - \dfrac{{{{\left( {k - 2} \right)}^2}}}{3} + \dfrac{8}{3}} \right] \\
$
We know that \[{\left( {a - b} \right)^2} = {\left( {a + b} \right)^2} - 4ab,\left( {a - b} \right) = \sqrt {{{\left( {a + b} \right)}^2} - 4ab} \]
$
= \sqrt {{{(k - 2)}^2} + 16} \left[ {\dfrac{{{{\left( {k - 2} \right)}^2}}}{2} - \dfrac{{{{\left( {k - 2} \right)}^2}}}{3} + \dfrac{8}{3}} \right] \\
= \sqrt {{{\left( {k - 2} \right)}^2} + 16} \left[ {\dfrac{{{{\left( {k - 2} \right)}^2} + 16}}{6}} \right] \\
= \dfrac{1}{6}{\left[ {{{\left( {k - 2} \right)}^2} + 16} \right]^{\dfrac{1}{2} + 1}} \\
= \dfrac{1}{6}{\left[ {{{\left( {k - 2} \right)}^2} + 16} \right]^{\dfrac{3}{2}}} \\
$
To get the least area, we must substitute $k = 2$in order for that term to get cancelled in the required area equation.
Required area when $k = 2$\[ = \dfrac{1}{6}{\left[ {{{\left( {2 - 2} \right)}^2} + 16} \right]^{\dfrac{3}{2}}}\]
$
= \dfrac{1}{6}\left( {\sqrt {{{16}^3}} } \right) \\
= \dfrac{{64}}{6} \\
= \dfrac{{32}}{3}sq.units \\
$
Hence, the correct answer is option (b)
Note: From the two given equations, we get a single equation and find the sum of the roots and product of the roots in the form of two equations to be substituted in the later part of the solution. Then the integration is done to find the required bounded area and the unknown values are substituted. The least possible value for $k$ is substituted to get the least possible area.
Recently Updated Pages
Arithmetic, Geometric & Harmonic Progressions Explained

Cartesian Form of Vector Explained: Formula, Examples & Uses

Apparent Frequency Explained: Formula, Uses & Examples

Calorimetry: Definition, Principles & Calculations

Centrifugal Force Explained: Definition, Formula & Examples

Charge in a Magnetic Field: Definition, Formula & Examples

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Understanding Atomic Structure for Beginners

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

How to Convert a Galvanometer into an Ammeter or Voltmeter

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Degree of Dissociation: Meaning, Formula, Calculation & Uses

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

