# If \[PQ\] be a normal chord of the parabola and \[S\] be the focus, prove that the locus of the centroid of the triangle \[SPQ\] is the curve \[36a{{y}^{2}}\left( 3x-5a \right)-81{{y}^{4}}=128{{a}^{4}}\].

Last updated date: 16th Mar 2023

•

Total views: 306k

•

Views today: 2.85k

Answer

Verified

306k+ views

Hint: If two points \[\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[\left( at_{2}^{2},2a{{t}_{2}} \right)\] lie on a chord which is normal to the point with parameter \[{{t}_{1}}\], then , \[{{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}\]

We will consider the equation of parabola be \[{{y}^{2}}=4ax\].

So , the focus of the parabola is \[S\left( a,0 \right)\].

Now, we will consider a point \[P\left( at_{1}^{2},2a{{t}_{1}} \right)\] on the parabola.

We need to find the equation of normal at this point.

We know , the equation of normal at the point \[(a{{t}^{2}},2at)\] is given as \[y=-tx+2at+a{{t}^{3}}\], where \[t\] is a parameter.

So , the equation of normal to the parabola at \[P\left( at_{1}^{2},2a{{t}_{1}} \right)\] is given as

\[y=-{{t}_{1}}x+2a{{t}_{1}}+at_{1}^{3}....\left( i \right)\]

In the question , it is given this normal is also a chord and cuts the parabola at \[Q\].

So , let the coordinates of \[Q=\left( at_{2}^{2},2a{{t}_{2}} \right)\].

\[Q\] lies on the normal chord. So , it should satisfy the equation \[\left( i \right)\].

Also, we know if two point \[\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[\left( at_{2}^{2},2a{{t}_{2}} \right)\] lie on a normal chord, then,

\[{{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}\]

So, \[Q=\left( a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}},-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right) \right)\]

Now, we need to find the locus of the centroid . So , let the centroid be \[G\left( h,k \right)\].

Now , we know the centroid of a triangle formed by the points \[({{x}_{1}},{{y}_{1}}),({{x}_{2}},{{y}_{2}})\] and \[({{x}_{3}},{{y}_{3}})\] is given by

\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)\].

Now, since \[G\] is the centroid of triangle \[SPQ\], so

\[(h,k)=\left( \dfrac{a+at_{1}^{2}+a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}}}{3},\dfrac{0+2a{{t}_{1}}-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}{3} \right)\]

Now , we will equate the coordinates .

On equating the coordinates , we get

\[h=\dfrac{a+at_{1}^{2}+a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}}}{3}.....\left( ii \right)\]

and \[k=\dfrac{0+2a{{t}_{1}}-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}{3}.....\left( iii \right)\]

From equation \[\left( iii \right)\], we get

\[3k=2a{{t}_{1}}-2a{{t}_{1}}-\dfrac{4a}{{{t}_{1}}}\]

or, \[k=\dfrac{-4a}{3{{t}_{1}}}\]

\[\Rightarrow {{t}_{1}}=\dfrac{-4a}{3k}\]

Now , we will substitute this value of \[{{t}_{1}}\] in equation \[\left( ii \right)\].

On , substituting this value of \[{{t}_{1}}\] in equation \[\left( ii \right)\] we get,

\[h=\dfrac{a+a{{\left( \dfrac{-4a}{3k} \right)}^{2}}+a{{\left( \dfrac{-4a}{3k}+\dfrac{2}{\dfrac{-4a}{3k}} \right)}^{2}}}{3}\]

\[\Rightarrow h=\dfrac{a+\dfrac{16{{a}^{3}}}{9{{k}^{2}}}+a\left( \dfrac{16{{a}^{2}}}{9{{k}^{2}}}+\dfrac{36{{k}^{2}}}{16{{a}^{2}}}+4 \right)}{3}\]

\[\Rightarrow 3h=\dfrac{9a{{k}^{2}}+16{{a}^{3}}+9a{{k}^{2}}\left( \dfrac{16{{a}^{2}}}{9{{k}^{2}}}+\dfrac{36{{k}^{2}}}{16{{a}^{2}}}+4 \right)}{9{{k}^{2}}}\]

\[\Rightarrow 3h=\dfrac{9a{{k}^{2}}+16{{a}^{3}}+16{{a}^{3}}+\dfrac{81{{k}^{4}}}{4a}+36a{{k}^{2}}}{9{{k}^{2}}}\]

\[\Rightarrow 27{{k}^{2}}h=45a{{k}^{2}}+32{{a}^{3}}+\dfrac{81{{k}^{4}}}{4a}\]

\[\Rightarrow 108a{{k}^{2}}h=180{{a}^{2}}{{k}^{2}}+128{{a}^{4}}+81{{k}^{4}}\]

\[\Rightarrow 36a{{k}^{2}}\left( 3h-5a \right)-81{{k}^{4}}=128{{a}^{4}}.........\]equation\[\left( iv \right)\]

So , the locus of \[G\left( h,k \right)\] is given by replacing \[\left( h,k \right)\] by \[(x,y)\] in equation \[\left( iv \right)\]

So, the equation of locus of the centroid is \[36a{{y}^{2}}\left( 3x-5a \right)-81{{y}^{4}}=128{{a}^{4}}\]

Note: While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .

We will consider the equation of parabola be \[{{y}^{2}}=4ax\].

So , the focus of the parabola is \[S\left( a,0 \right)\].

Now, we will consider a point \[P\left( at_{1}^{2},2a{{t}_{1}} \right)\] on the parabola.

We need to find the equation of normal at this point.

We know , the equation of normal at the point \[(a{{t}^{2}},2at)\] is given as \[y=-tx+2at+a{{t}^{3}}\], where \[t\] is a parameter.

So , the equation of normal to the parabola at \[P\left( at_{1}^{2},2a{{t}_{1}} \right)\] is given as

\[y=-{{t}_{1}}x+2a{{t}_{1}}+at_{1}^{3}....\left( i \right)\]

In the question , it is given this normal is also a chord and cuts the parabola at \[Q\].

So , let the coordinates of \[Q=\left( at_{2}^{2},2a{{t}_{2}} \right)\].

\[Q\] lies on the normal chord. So , it should satisfy the equation \[\left( i \right)\].

Also, we know if two point \[\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[\left( at_{2}^{2},2a{{t}_{2}} \right)\] lie on a normal chord, then,

\[{{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}\]

So, \[Q=\left( a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}},-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right) \right)\]

Now, we need to find the locus of the centroid . So , let the centroid be \[G\left( h,k \right)\].

Now , we know the centroid of a triangle formed by the points \[({{x}_{1}},{{y}_{1}}),({{x}_{2}},{{y}_{2}})\] and \[({{x}_{3}},{{y}_{3}})\] is given by

\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)\].

Now, since \[G\] is the centroid of triangle \[SPQ\], so

\[(h,k)=\left( \dfrac{a+at_{1}^{2}+a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}}}{3},\dfrac{0+2a{{t}_{1}}-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}{3} \right)\]

Now , we will equate the coordinates .

On equating the coordinates , we get

\[h=\dfrac{a+at_{1}^{2}+a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}}}{3}.....\left( ii \right)\]

and \[k=\dfrac{0+2a{{t}_{1}}-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}{3}.....\left( iii \right)\]

From equation \[\left( iii \right)\], we get

\[3k=2a{{t}_{1}}-2a{{t}_{1}}-\dfrac{4a}{{{t}_{1}}}\]

or, \[k=\dfrac{-4a}{3{{t}_{1}}}\]

\[\Rightarrow {{t}_{1}}=\dfrac{-4a}{3k}\]

Now , we will substitute this value of \[{{t}_{1}}\] in equation \[\left( ii \right)\].

On , substituting this value of \[{{t}_{1}}\] in equation \[\left( ii \right)\] we get,

\[h=\dfrac{a+a{{\left( \dfrac{-4a}{3k} \right)}^{2}}+a{{\left( \dfrac{-4a}{3k}+\dfrac{2}{\dfrac{-4a}{3k}} \right)}^{2}}}{3}\]

\[\Rightarrow h=\dfrac{a+\dfrac{16{{a}^{3}}}{9{{k}^{2}}}+a\left( \dfrac{16{{a}^{2}}}{9{{k}^{2}}}+\dfrac{36{{k}^{2}}}{16{{a}^{2}}}+4 \right)}{3}\]

\[\Rightarrow 3h=\dfrac{9a{{k}^{2}}+16{{a}^{3}}+9a{{k}^{2}}\left( \dfrac{16{{a}^{2}}}{9{{k}^{2}}}+\dfrac{36{{k}^{2}}}{16{{a}^{2}}}+4 \right)}{9{{k}^{2}}}\]

\[\Rightarrow 3h=\dfrac{9a{{k}^{2}}+16{{a}^{3}}+16{{a}^{3}}+\dfrac{81{{k}^{4}}}{4a}+36a{{k}^{2}}}{9{{k}^{2}}}\]

\[\Rightarrow 27{{k}^{2}}h=45a{{k}^{2}}+32{{a}^{3}}+\dfrac{81{{k}^{4}}}{4a}\]

\[\Rightarrow 108a{{k}^{2}}h=180{{a}^{2}}{{k}^{2}}+128{{a}^{4}}+81{{k}^{4}}\]

\[\Rightarrow 36a{{k}^{2}}\left( 3h-5a \right)-81{{k}^{4}}=128{{a}^{4}}.........\]equation\[\left( iv \right)\]

So , the locus of \[G\left( h,k \right)\] is given by replacing \[\left( h,k \right)\] by \[(x,y)\] in equation \[\left( iv \right)\]

So, the equation of locus of the centroid is \[36a{{y}^{2}}\left( 3x-5a \right)-81{{y}^{4}}=128{{a}^{4}}\]

Note: While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .

Recently Updated Pages

Calculate the entropy change involved in the conversion class 11 chemistry JEE_Main

The law formulated by Dr Nernst is A First law of thermodynamics class 11 chemistry JEE_Main

For the reaction at rm0rm0rmC and normal pressure A class 11 chemistry JEE_Main

An engine operating between rm15rm0rm0rmCand rm2rm5rm0rmC class 11 chemistry JEE_Main

For the reaction rm2Clg to rmCrmlrm2rmg the signs of class 11 chemistry JEE_Main

The enthalpy change for the transition of liquid water class 11 chemistry JEE_Main

Trending doubts

Name the Largest and the Smallest Cell in the Human Body ?

Fill in the blanks A 1 lakh ten thousand B 1 million class 9 maths CBSE

Epipetalous and syngenesious stamens occur in aSolanaceae class 11 biology CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

A ball impinges directly on a similar ball at rest class 11 physics CBSE

Lysosomes are known as suicidal bags of cell why class 11 biology CBSE

Two balls are dropped from different heights at different class 11 physics CBSE

A 30 solution of H2O2 is marketed as 100 volume hydrogen class 11 chemistry JEE_Main

A sample of an ideal gas is expanded from 1dm3 to 3dm3 class 11 chemistry CBSE