If \[PQ\] be a normal chord of the parabola and \[S\] be the focus, prove that the locus of the centroid of the triangle \[SPQ\] is the curve \[36a{{y}^{2}}\left( 3x-5a \right)-81{{y}^{4}}=128{{a}^{4}}\].
Answer
364.2k+ views
Hint: If two points \[\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[\left( at_{2}^{2},2a{{t}_{2}} \right)\] lie on a chord which is normal to the point with parameter \[{{t}_{1}}\], then , \[{{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}\]
We will consider the equation of parabola be \[{{y}^{2}}=4ax\].
So , the focus of the parabola is \[S\left( a,0 \right)\].
Now, we will consider a point \[P\left( at_{1}^{2},2a{{t}_{1}} \right)\] on the parabola.
We need to find the equation of normal at this point.
We know , the equation of normal at the point \[(a{{t}^{2}},2at)\] is given as \[y=-tx+2at+a{{t}^{3}}\], where \[t\] is a parameter.
So , the equation of normal to the parabola at \[P\left( at_{1}^{2},2a{{t}_{1}} \right)\] is given as
\[y=-{{t}_{1}}x+2a{{t}_{1}}+at_{1}^{3}....\left( i \right)\]
In the question , it is given this normal is also a chord and cuts the parabola at \[Q\].
So , let the coordinates of \[Q=\left( at_{2}^{2},2a{{t}_{2}} \right)\].
\[Q\] lies on the normal chord. So , it should satisfy the equation \[\left( i \right)\].
Also, we know if two point \[\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[\left( at_{2}^{2},2a{{t}_{2}} \right)\] lie on a normal chord, then,
\[{{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}\]
So, \[Q=\left( a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}},-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right) \right)\]
Now, we need to find the locus of the centroid . So , let the centroid be \[G\left( h,k \right)\].
Now , we know the centroid of a triangle formed by the points \[({{x}_{1}},{{y}_{1}}),({{x}_{2}},{{y}_{2}})\] and \[({{x}_{3}},{{y}_{3}})\] is given by
\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)\].
Now, since \[G\] is the centroid of triangle \[SPQ\], so
\[(h,k)=\left( \dfrac{a+at_{1}^{2}+a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}}}{3},\dfrac{0+2a{{t}_{1}}-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}{3} \right)\]
Now , we will equate the coordinates .
On equating the coordinates , we get
\[h=\dfrac{a+at_{1}^{2}+a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}}}{3}.....\left( ii \right)\]
and \[k=\dfrac{0+2a{{t}_{1}}-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}{3}.....\left( iii \right)\]
From equation \[\left( iii \right)\], we get
\[3k=2a{{t}_{1}}-2a{{t}_{1}}-\dfrac{4a}{{{t}_{1}}}\]
or, \[k=\dfrac{-4a}{3{{t}_{1}}}\]
\[\Rightarrow {{t}_{1}}=\dfrac{-4a}{3k}\]
Now , we will substitute this value of \[{{t}_{1}}\] in equation \[\left( ii \right)\].
On , substituting this value of \[{{t}_{1}}\] in equation \[\left( ii \right)\] we get,
\[h=\dfrac{a+a{{\left( \dfrac{-4a}{3k} \right)}^{2}}+a{{\left( \dfrac{-4a}{3k}+\dfrac{2}{\dfrac{-4a}{3k}} \right)}^{2}}}{3}\]
\[\Rightarrow h=\dfrac{a+\dfrac{16{{a}^{3}}}{9{{k}^{2}}}+a\left( \dfrac{16{{a}^{2}}}{9{{k}^{2}}}+\dfrac{36{{k}^{2}}}{16{{a}^{2}}}+4 \right)}{3}\]
\[\Rightarrow 3h=\dfrac{9a{{k}^{2}}+16{{a}^{3}}+9a{{k}^{2}}\left( \dfrac{16{{a}^{2}}}{9{{k}^{2}}}+\dfrac{36{{k}^{2}}}{16{{a}^{2}}}+4 \right)}{9{{k}^{2}}}\]
\[\Rightarrow 3h=\dfrac{9a{{k}^{2}}+16{{a}^{3}}+16{{a}^{3}}+\dfrac{81{{k}^{4}}}{4a}+36a{{k}^{2}}}{9{{k}^{2}}}\]
\[\Rightarrow 27{{k}^{2}}h=45a{{k}^{2}}+32{{a}^{3}}+\dfrac{81{{k}^{4}}}{4a}\]
\[\Rightarrow 108a{{k}^{2}}h=180{{a}^{2}}{{k}^{2}}+128{{a}^{4}}+81{{k}^{4}}\]
\[\Rightarrow 36a{{k}^{2}}\left( 3h-5a \right)-81{{k}^{4}}=128{{a}^{4}}.........\]equation\[\left( iv \right)\]
So , the locus of \[G\left( h,k \right)\] is given by replacing \[\left( h,k \right)\] by \[(x,y)\] in equation \[\left( iv \right)\]
So, the equation of locus of the centroid is \[36a{{y}^{2}}\left( 3x-5a \right)-81{{y}^{4}}=128{{a}^{4}}\]
Note: While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .

We will consider the equation of parabola be \[{{y}^{2}}=4ax\].
So , the focus of the parabola is \[S\left( a,0 \right)\].
Now, we will consider a point \[P\left( at_{1}^{2},2a{{t}_{1}} \right)\] on the parabola.
We need to find the equation of normal at this point.
We know , the equation of normal at the point \[(a{{t}^{2}},2at)\] is given as \[y=-tx+2at+a{{t}^{3}}\], where \[t\] is a parameter.
So , the equation of normal to the parabola at \[P\left( at_{1}^{2},2a{{t}_{1}} \right)\] is given as
\[y=-{{t}_{1}}x+2a{{t}_{1}}+at_{1}^{3}....\left( i \right)\]
In the question , it is given this normal is also a chord and cuts the parabola at \[Q\].
So , let the coordinates of \[Q=\left( at_{2}^{2},2a{{t}_{2}} \right)\].
\[Q\] lies on the normal chord. So , it should satisfy the equation \[\left( i \right)\].
Also, we know if two point \[\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[\left( at_{2}^{2},2a{{t}_{2}} \right)\] lie on a normal chord, then,
\[{{t}_{2}}=-{{t}_{1}}-\dfrac{2}{{{t}_{1}}}\]
So, \[Q=\left( a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}},-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right) \right)\]
Now, we need to find the locus of the centroid . So , let the centroid be \[G\left( h,k \right)\].
Now , we know the centroid of a triangle formed by the points \[({{x}_{1}},{{y}_{1}}),({{x}_{2}},{{y}_{2}})\] and \[({{x}_{3}},{{y}_{3}})\] is given by
\[\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}}{3},\dfrac{{{y}_{1}}+{{y}_{2}}+{{y}_{3}}}{3} \right)\].
Now, since \[G\] is the centroid of triangle \[SPQ\], so
\[(h,k)=\left( \dfrac{a+at_{1}^{2}+a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}}}{3},\dfrac{0+2a{{t}_{1}}-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}{3} \right)\]
Now , we will equate the coordinates .
On equating the coordinates , we get
\[h=\dfrac{a+at_{1}^{2}+a{{\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}^{2}}}{3}.....\left( ii \right)\]
and \[k=\dfrac{0+2a{{t}_{1}}-2a\left( {{t}_{1}}+\dfrac{2}{{{t}_{1}}} \right)}{3}.....\left( iii \right)\]
From equation \[\left( iii \right)\], we get
\[3k=2a{{t}_{1}}-2a{{t}_{1}}-\dfrac{4a}{{{t}_{1}}}\]
or, \[k=\dfrac{-4a}{3{{t}_{1}}}\]
\[\Rightarrow {{t}_{1}}=\dfrac{-4a}{3k}\]
Now , we will substitute this value of \[{{t}_{1}}\] in equation \[\left( ii \right)\].
On , substituting this value of \[{{t}_{1}}\] in equation \[\left( ii \right)\] we get,
\[h=\dfrac{a+a{{\left( \dfrac{-4a}{3k} \right)}^{2}}+a{{\left( \dfrac{-4a}{3k}+\dfrac{2}{\dfrac{-4a}{3k}} \right)}^{2}}}{3}\]
\[\Rightarrow h=\dfrac{a+\dfrac{16{{a}^{3}}}{9{{k}^{2}}}+a\left( \dfrac{16{{a}^{2}}}{9{{k}^{2}}}+\dfrac{36{{k}^{2}}}{16{{a}^{2}}}+4 \right)}{3}\]
\[\Rightarrow 3h=\dfrac{9a{{k}^{2}}+16{{a}^{3}}+9a{{k}^{2}}\left( \dfrac{16{{a}^{2}}}{9{{k}^{2}}}+\dfrac{36{{k}^{2}}}{16{{a}^{2}}}+4 \right)}{9{{k}^{2}}}\]
\[\Rightarrow 3h=\dfrac{9a{{k}^{2}}+16{{a}^{3}}+16{{a}^{3}}+\dfrac{81{{k}^{4}}}{4a}+36a{{k}^{2}}}{9{{k}^{2}}}\]
\[\Rightarrow 27{{k}^{2}}h=45a{{k}^{2}}+32{{a}^{3}}+\dfrac{81{{k}^{4}}}{4a}\]
\[\Rightarrow 108a{{k}^{2}}h=180{{a}^{2}}{{k}^{2}}+128{{a}^{4}}+81{{k}^{4}}\]
\[\Rightarrow 36a{{k}^{2}}\left( 3h-5a \right)-81{{k}^{4}}=128{{a}^{4}}.........\]equation\[\left( iv \right)\]
So , the locus of \[G\left( h,k \right)\] is given by replacing \[\left( h,k \right)\] by \[(x,y)\] in equation \[\left( iv \right)\]
So, the equation of locus of the centroid is \[36a{{y}^{2}}\left( 3x-5a \right)-81{{y}^{4}}=128{{a}^{4}}\]
Note: While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
Last updated date: 02nd Oct 2023
•
Total views: 364.2k
•
Views today: 6.64k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

One cusec is equal to how many liters class 8 maths CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

How many millions make a billion class 6 maths CBSE

How many crores make 10 million class 7 maths CBSE

What is meant by shramdaan AVoluntary contribution class 11 social science CBSE

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

How fast is 60 miles per hour in kilometres per ho class 10 maths CBSE
