
If $\left| z \right| = \left| \omega \right|,\omega \ne 0$and$\arg \left( z \right) + \arg \left( \omega \right) = \pi $, then $z = $
$
{\text{a}}{\text{. }} - \omega \\
{\text{b}}{\text{. }}\omega \\
{\text{c}}{\text{. }}\varpi \\
{\text{d}}{\text{. }} - \varpi \\
$
Answer
232.8k+ views
Hint: Assume $z = \left| z \right|{e^{i\alpha }}$and $\omega = \left| \omega \right|{e^{i\beta }}$
Let, $z = \left| z \right|{e^{i\alpha }}.............\left( 1 \right),{\text{ }}\omega = \left| \omega \right|{e^{i\beta }}.........\left( 2 \right)$
Where $z$and $\omega $are complex numbers.
From equation 1,$\arg \left( z \right) = \alpha $and $\arg \left( \omega \right) = \beta $
According to question it is given that
$
\arg \left( z \right) + \arg \left( \omega \right) = \pi \\
\Rightarrow \alpha + \beta = \pi \\
\Rightarrow \alpha = \pi - \beta ..........\left( 3 \right) \\
$
From equation (1) and (3)
$
z = \left| z \right|{e^{i\alpha }} \\
\Rightarrow z = \left| z \right|{e^{i\left( {\pi - \beta } \right)}} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }}........\left( 4 \right) \\
$
Now from equation (2)
$\omega = \left| \omega \right|{e^{i\beta }}$
Now take conjugate on both sides
$
\varpi = \overline {\left| \omega \right|{e^{i\beta }}} \\
\Rightarrow \varpi = \left| \varpi \right|{e^{ - i\beta }} \\
\Rightarrow {e^{ - i\beta }} = \frac{\varpi }{{\left| \varpi \right|}}..........\left( 5 \right) \\
$
Now, from equation (4) and (5)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \varpi \right|}}} \right).......\left( 6 \right) \\
$
Now as we know modulus of any complex numbers and its conjugate both are equal so, use this property
$\left| \omega \right| = \left| \varpi \right|$
Therefore from equation (6)
$ \Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \omega \right|}}} \right).........\left( 7 \right)$
Now it is given that
$\left| z \right| = \left| \omega \right|,\omega \ne 0$
Therefore from equation (7)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| z \right|}}} \right) \\
\Rightarrow z = \varpi {e^{i\pi }}........\left( 8 \right) \\
$
Now according to Euler’s Theorem ${e^{ix}} = \cos x + i\sin x$
$ \Rightarrow {e^{i\pi }} = \cos \pi + i\sin \pi $
Now we know $\cos \pi = - 1,{\text{ }}\sin \pi = 0$
$ \Rightarrow {e^{i\pi }} = - 1 + 0 = - 1$
Therefore from equation (8)
$
\Rightarrow z = \varpi {e^{i\pi }} \\
\Rightarrow z = - \varpi \\
$
Hence, option (d) is correct.
Note: Whenever we face such types of problems, always assume the complex numbers in the form of $z = \left| z \right|{e^{i\alpha }}$and $\omega = \left| \omega \right|{e^{i\beta }}$, then use the given conditions to simplify it, then use the property that modulus of any complex numbers and its conjugate both are equal and finally using Euler’s Theorem we get the required result.
Let, $z = \left| z \right|{e^{i\alpha }}.............\left( 1 \right),{\text{ }}\omega = \left| \omega \right|{e^{i\beta }}.........\left( 2 \right)$
Where $z$and $\omega $are complex numbers.
From equation 1,$\arg \left( z \right) = \alpha $and $\arg \left( \omega \right) = \beta $
According to question it is given that
$
\arg \left( z \right) + \arg \left( \omega \right) = \pi \\
\Rightarrow \alpha + \beta = \pi \\
\Rightarrow \alpha = \pi - \beta ..........\left( 3 \right) \\
$
From equation (1) and (3)
$
z = \left| z \right|{e^{i\alpha }} \\
\Rightarrow z = \left| z \right|{e^{i\left( {\pi - \beta } \right)}} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }}........\left( 4 \right) \\
$
Now from equation (2)
$\omega = \left| \omega \right|{e^{i\beta }}$
Now take conjugate on both sides
$
\varpi = \overline {\left| \omega \right|{e^{i\beta }}} \\
\Rightarrow \varpi = \left| \varpi \right|{e^{ - i\beta }} \\
\Rightarrow {e^{ - i\beta }} = \frac{\varpi }{{\left| \varpi \right|}}..........\left( 5 \right) \\
$
Now, from equation (4) and (5)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}{e^{ - i\beta }} \\
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \varpi \right|}}} \right).......\left( 6 \right) \\
$
Now as we know modulus of any complex numbers and its conjugate both are equal so, use this property
$\left| \omega \right| = \left| \varpi \right|$
Therefore from equation (6)
$ \Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| \omega \right|}}} \right).........\left( 7 \right)$
Now it is given that
$\left| z \right| = \left| \omega \right|,\omega \ne 0$
Therefore from equation (7)
$
\Rightarrow z = \left| z \right|{e^{i\pi }}\left( {\frac{\varpi }{{\left| z \right|}}} \right) \\
\Rightarrow z = \varpi {e^{i\pi }}........\left( 8 \right) \\
$
Now according to Euler’s Theorem ${e^{ix}} = \cos x + i\sin x$
$ \Rightarrow {e^{i\pi }} = \cos \pi + i\sin \pi $
Now we know $\cos \pi = - 1,{\text{ }}\sin \pi = 0$
$ \Rightarrow {e^{i\pi }} = - 1 + 0 = - 1$
Therefore from equation (8)
$
\Rightarrow z = \varpi {e^{i\pi }} \\
\Rightarrow z = - \varpi \\
$
Hence, option (d) is correct.
Note: Whenever we face such types of problems, always assume the complex numbers in the form of $z = \left| z \right|{e^{i\alpha }}$and $\omega = \left| \omega \right|{e^{i\beta }}$, then use the given conditions to simplify it, then use the property that modulus of any complex numbers and its conjugate both are equal and finally using Euler’s Theorem we get the required result.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding the Electric Field of a Uniformly Charged Ring

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding Electromagnetic Waves and Their Importance

