If $f\left( xy \right)=f\left( x \right)+f\left( y \right)\forall x,y\ne 0\And f'\left( 1 \right)=3,$then test the differentiability of $f\left( x \right)$.
Last updated date: 15th Mar 2023
•
Total views: 305.7k
•
Views today: 5.88k
Answer
305.7k+ views
Hint: Since we have to test the differentiability, we have to find the derivative of the function. We can find derivatives using first principles and using the functional relation given in the question.
It is given in the question $f\left( xy \right)=f\left( x \right)+f\left( y \right)\forall x,y\ne 0\text{ }\And f'\left( 1 \right)=3,$
To check differentiability, we have to find $f'\left( x \right)$. To find $f'\left( x \right)$ we have to follow certain no. of steps,
1. Use first principle to find $f'\left( x \right)$
We know by first principle,
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x\left( 1+\dfrac{h}{x} \right) \right)-f\left( x \right)}{h}.........\left( I \right) \\
\end{align}$
Since it is given $f\left( xy \right)=f\left( x \right)+f\left( y \right)$, we can substitute $f\left( x\left( 1+\dfrac{h}{x} \right) \right)=f\left( x \right)+f\left( 1+\dfrac{h}{x} \right)$ in $\left( I \right)$,
$\begin{align}
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)+f\left( 1+\dfrac{h}{x} \right)-f\left( x \right)}{h} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)}{h} \\
\end{align}$
Now, we cannot proceed further in step 1. So, we proceed to step 2.
2. We will find some boundary values of $f\left( x \right)$.
Given $f\left( xy \right)=f\left( x \right)+f\left( y \right)$
Substituting $x=1,y=1$ in the above functional relation, we get 🡪
$\begin{align}
& f\left( 1 \right)=f\left( 1 \right)+f\left( 1 \right) \\
& \Rightarrow f\left( 1 \right)=2f\left( 1 \right) \\
& \Rightarrow f\left( 1 \right)=0......................\left( II \right) \\
\end{align}$
Now we will go to step 1. Adding/subtracting $0$to any term will not cause any change in value.
So, in the final expression of step1, we will do the following changes,
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-0}{h}$
Now, we will multiple and divide the denominator with $x$. Also, from $\left( II \right)$, we can substitute 0 as f1.
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{x.\dfrac{h}{x}}$
Since limit is of $h$, we can take $\dfrac{1}{x}$ out of the limit.
$f'\left( x \right)=\dfrac{1}{x}\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}$
Since it is given $x\ne 0,$ we can replace $\underset{h\to 0}{\mathop{\lim }}\,\text{ by }\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,$
$f'\left( x \right)=\dfrac{1}{x}\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}...........\left( III \right)$
If we substitute $x=1$ in the first principle of derivative, we will get,
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& x=1\to \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}.........\left( IV \right) \\
\end{align}$
In $\left( IV \right)$, we can write $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}=f'\left( 1 \right)$
Similarly, in $\left( III \right)$, we can write
\[\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}=f'\left( 1 \right)\]
So, substituting in $\left( III \right)$, we get,
\[f'\left( x \right)=\dfrac{1}{x}\times of'\left( 1 \right)\]
It is given \[f'\left( 1 \right)=3\],
$\Rightarrow f'\left( x \right)=\dfrac{3}{x}$
If we draw the graph of $f'\left( x \right)=\dfrac{3}{x}$, we get 🡪
This graph is not continuous at $x=0$ since $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f'\left( x \right)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f'\left( x \right)$.
So we can say that $f\left( x \right)$ is differentiable $\ for all x\in R-\left\{ 0 \right\}$.
Note: There is a possibility of mistake while finding the boundary value of the function in step 2. The boundary value is to be found by taking help of the information given in the question. For example, it was given in the question that $f'\left( 1 \right)=3$ that is why we found the value of $f\left( 1 \right)$ in step 2.
It is given in the question $f\left( xy \right)=f\left( x \right)+f\left( y \right)\forall x,y\ne 0\text{ }\And f'\left( 1 \right)=3,$
To check differentiability, we have to find $f'\left( x \right)$. To find $f'\left( x \right)$ we have to follow certain no. of steps,
1. Use first principle to find $f'\left( x \right)$
We know by first principle,
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x\left( 1+\dfrac{h}{x} \right) \right)-f\left( x \right)}{h}.........\left( I \right) \\
\end{align}$
Since it is given $f\left( xy \right)=f\left( x \right)+f\left( y \right)$, we can substitute $f\left( x\left( 1+\dfrac{h}{x} \right) \right)=f\left( x \right)+f\left( 1+\dfrac{h}{x} \right)$ in $\left( I \right)$,
$\begin{align}
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)+f\left( 1+\dfrac{h}{x} \right)-f\left( x \right)}{h} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)}{h} \\
\end{align}$
Now, we cannot proceed further in step 1. So, we proceed to step 2.
2. We will find some boundary values of $f\left( x \right)$.
Given $f\left( xy \right)=f\left( x \right)+f\left( y \right)$
Substituting $x=1,y=1$ in the above functional relation, we get 🡪
$\begin{align}
& f\left( 1 \right)=f\left( 1 \right)+f\left( 1 \right) \\
& \Rightarrow f\left( 1 \right)=2f\left( 1 \right) \\
& \Rightarrow f\left( 1 \right)=0......................\left( II \right) \\
\end{align}$
Now we will go to step 1. Adding/subtracting $0$to any term will not cause any change in value.
So, in the final expression of step1, we will do the following changes,
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-0}{h}$
Now, we will multiple and divide the denominator with $x$. Also, from $\left( II \right)$, we can substitute 0 as f1.
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{x.\dfrac{h}{x}}$
Since limit is of $h$, we can take $\dfrac{1}{x}$ out of the limit.
$f'\left( x \right)=\dfrac{1}{x}\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}$
Since it is given $x\ne 0,$ we can replace $\underset{h\to 0}{\mathop{\lim }}\,\text{ by }\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,$
$f'\left( x \right)=\dfrac{1}{x}\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}...........\left( III \right)$
If we substitute $x=1$ in the first principle of derivative, we will get,
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& x=1\to \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}.........\left( IV \right) \\
\end{align}$
In $\left( IV \right)$, we can write $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}=f'\left( 1 \right)$
Similarly, in $\left( III \right)$, we can write
\[\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}=f'\left( 1 \right)\]
So, substituting in $\left( III \right)$, we get,
\[f'\left( x \right)=\dfrac{1}{x}\times of'\left( 1 \right)\]
It is given \[f'\left( 1 \right)=3\],
$\Rightarrow f'\left( x \right)=\dfrac{3}{x}$
If we draw the graph of $f'\left( x \right)=\dfrac{3}{x}$, we get 🡪

This graph is not continuous at $x=0$ since $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f'\left( x \right)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f'\left( x \right)$.
So we can say that $f\left( x \right)$ is differentiable $\ for all x\in R-\left\{ 0 \right\}$.
Note: There is a possibility of mistake while finding the boundary value of the function in step 2. The boundary value is to be found by taking help of the information given in the question. For example, it was given in the question that $f'\left( 1 \right)=3$ that is why we found the value of $f\left( 1 \right)$ in step 2.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
