
If $f\left( xy \right)=f\left( x \right)+f\left( y \right)\forall x,y\ne 0\And f'\left( 1 \right)=3,$then test the differentiability of $f\left( x \right)$.
Answer
608.4k+ views
Hint: Since we have to test the differentiability, we have to find the derivative of the function. We can find derivatives using first principles and using the functional relation given in the question.
It is given in the question $f\left( xy \right)=f\left( x \right)+f\left( y \right)\forall x,y\ne 0\text{ }\And f'\left( 1 \right)=3,$
To check differentiability, we have to find $f'\left( x \right)$. To find $f'\left( x \right)$ we have to follow certain no. of steps,
1. Use first principle to find $f'\left( x \right)$
We know by first principle,
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x\left( 1+\dfrac{h}{x} \right) \right)-f\left( x \right)}{h}.........\left( I \right) \\
\end{align}$
Since it is given $f\left( xy \right)=f\left( x \right)+f\left( y \right)$, we can substitute $f\left( x\left( 1+\dfrac{h}{x} \right) \right)=f\left( x \right)+f\left( 1+\dfrac{h}{x} \right)$ in $\left( I \right)$,
$\begin{align}
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)+f\left( 1+\dfrac{h}{x} \right)-f\left( x \right)}{h} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)}{h} \\
\end{align}$
Now, we cannot proceed further in step 1. So, we proceed to step 2.
2. We will find some boundary values of $f\left( x \right)$.
Given $f\left( xy \right)=f\left( x \right)+f\left( y \right)$
Substituting $x=1,y=1$ in the above functional relation, we get 🡪
$\begin{align}
& f\left( 1 \right)=f\left( 1 \right)+f\left( 1 \right) \\
& \Rightarrow f\left( 1 \right)=2f\left( 1 \right) \\
& \Rightarrow f\left( 1 \right)=0......................\left( II \right) \\
\end{align}$
Now we will go to step 1. Adding/subtracting $0$to any term will not cause any change in value.
So, in the final expression of step1, we will do the following changes,
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-0}{h}$
Now, we will multiple and divide the denominator with $x$. Also, from $\left( II \right)$, we can substitute 0 as f1.
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{x.\dfrac{h}{x}}$
Since limit is of $h$, we can take $\dfrac{1}{x}$ out of the limit.
$f'\left( x \right)=\dfrac{1}{x}\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}$
Since it is given $x\ne 0,$ we can replace $\underset{h\to 0}{\mathop{\lim }}\,\text{ by }\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,$
$f'\left( x \right)=\dfrac{1}{x}\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}...........\left( III \right)$
If we substitute $x=1$ in the first principle of derivative, we will get,
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& x=1\to \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}.........\left( IV \right) \\
\end{align}$
In $\left( IV \right)$, we can write $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}=f'\left( 1 \right)$
Similarly, in $\left( III \right)$, we can write
\[\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}=f'\left( 1 \right)\]
So, substituting in $\left( III \right)$, we get,
\[f'\left( x \right)=\dfrac{1}{x}\times of'\left( 1 \right)\]
It is given \[f'\left( 1 \right)=3\],
$\Rightarrow f'\left( x \right)=\dfrac{3}{x}$
If we draw the graph of $f'\left( x \right)=\dfrac{3}{x}$, we get 🡪
This graph is not continuous at $x=0$ since $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f'\left( x \right)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f'\left( x \right)$.
So we can say that $f\left( x \right)$ is differentiable $\ for all x\in R-\left\{ 0 \right\}$.
Note: There is a possibility of mistake while finding the boundary value of the function in step 2. The boundary value is to be found by taking help of the information given in the question. For example, it was given in the question that $f'\left( 1 \right)=3$ that is why we found the value of $f\left( 1 \right)$ in step 2.
It is given in the question $f\left( xy \right)=f\left( x \right)+f\left( y \right)\forall x,y\ne 0\text{ }\And f'\left( 1 \right)=3,$
To check differentiability, we have to find $f'\left( x \right)$. To find $f'\left( x \right)$ we have to follow certain no. of steps,
1. Use first principle to find $f'\left( x \right)$
We know by first principle,
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x\left( 1+\dfrac{h}{x} \right) \right)-f\left( x \right)}{h}.........\left( I \right) \\
\end{align}$
Since it is given $f\left( xy \right)=f\left( x \right)+f\left( y \right)$, we can substitute $f\left( x\left( 1+\dfrac{h}{x} \right) \right)=f\left( x \right)+f\left( 1+\dfrac{h}{x} \right)$ in $\left( I \right)$,
$\begin{align}
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x \right)+f\left( 1+\dfrac{h}{x} \right)-f\left( x \right)}{h} \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)}{h} \\
\end{align}$
Now, we cannot proceed further in step 1. So, we proceed to step 2.
2. We will find some boundary values of $f\left( x \right)$.
Given $f\left( xy \right)=f\left( x \right)+f\left( y \right)$
Substituting $x=1,y=1$ in the above functional relation, we get 🡪
$\begin{align}
& f\left( 1 \right)=f\left( 1 \right)+f\left( 1 \right) \\
& \Rightarrow f\left( 1 \right)=2f\left( 1 \right) \\
& \Rightarrow f\left( 1 \right)=0......................\left( II \right) \\
\end{align}$
Now we will go to step 1. Adding/subtracting $0$to any term will not cause any change in value.
So, in the final expression of step1, we will do the following changes,
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-0}{h}$
Now, we will multiple and divide the denominator with $x$. Also, from $\left( II \right)$, we can substitute 0 as f1.
$f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{x.\dfrac{h}{x}}$
Since limit is of $h$, we can take $\dfrac{1}{x}$ out of the limit.
$f'\left( x \right)=\dfrac{1}{x}\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}$
Since it is given $x\ne 0,$ we can replace $\underset{h\to 0}{\mathop{\lim }}\,\text{ by }\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,$
$f'\left( x \right)=\dfrac{1}{x}\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}...........\left( III \right)$
If we substitute $x=1$ in the first principle of derivative, we will get,
$\begin{align}
& f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( x+h \right)-f\left( x \right)}{h} \\
& x=1\to \\
& \Rightarrow f'\left( x \right)=\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}.........\left( IV \right) \\
\end{align}$
In $\left( IV \right)$, we can write $\underset{h\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+h \right)-f\left( 1 \right)}{h}=f'\left( 1 \right)$
Similarly, in $\left( III \right)$, we can write
\[\underset{\dfrac{h}{x}\to 0}{\mathop{\lim }}\,\dfrac{f\left( 1+\dfrac{h}{x} \right)-f\left( 1 \right)}{\dfrac{h}{x}}=f'\left( 1 \right)\]
So, substituting in $\left( III \right)$, we get,
\[f'\left( x \right)=\dfrac{1}{x}\times of'\left( 1 \right)\]
It is given \[f'\left( 1 \right)=3\],
$\Rightarrow f'\left( x \right)=\dfrac{3}{x}$
If we draw the graph of $f'\left( x \right)=\dfrac{3}{x}$, we get 🡪
This graph is not continuous at $x=0$ since $\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f'\left( x \right)\ne \underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f'\left( x \right)$.
So we can say that $f\left( x \right)$ is differentiable $\ for all x\in R-\left\{ 0 \right\}$.
Note: There is a possibility of mistake while finding the boundary value of the function in step 2. The boundary value is to be found by taking help of the information given in the question. For example, it was given in the question that $f'\left( 1 \right)=3$ that is why we found the value of $f\left( 1 \right)$ in step 2.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

What is virtual and erect image ?

What is the Full Form of PVC, PET, HDPE, LDPE, PP and PS ?

The first microscope was invented by A Leeuwenhoek class 12 biology CBSE

Write any three uses of polaroids class 12 physics CBSE

