
If \[\dfrac{b}{a}=\tan x\] then \[\sqrt{\dfrac{a+b}{a-b}}+\sqrt{\dfrac{a-b}{a+b}}\] is equal to:
A. \[\dfrac{2\sin x}{\sqrt{\sin 2x}}\]
B. \[\dfrac{2\cos x}{\sqrt{\cos 2x}}\]
C. \[\dfrac{2\operatorname{cosx}}{\sqrt{\sin 2x}}\]
D. \[\dfrac{2\sin x}{\sqrt{\cos 2x}}\]
Answer
555.3k+ views
Hint:Simplify the expression given by cross multiplying.Then substitute \[\dfrac{b}{a}=\tan x\]. Simplify it using trigonometric identities and you will get the required quantity.
“Complete step-by-step answer:”
Given is that \[\dfrac{b}{a}=\tan x\]
Given is the expression\[\sqrt{\dfrac{a+b}{a-b}}+\sqrt{\dfrac{a-b}{a+b}}\] which can be written as,
\[\dfrac{\sqrt{a+b}}{\sqrt{a-b}}+\dfrac{\sqrt{a-b}}{\sqrt{a+b}}\] [Cross multiply and simplify the expression]
\[\dfrac{{{\left( \sqrt{a+b} \right)}^{2}}+{{\left( \sqrt{a-b} \right)}^{2}}}{\left( \sqrt{a-b} \right)\left( \sqrt{a+b} \right)}=\dfrac{(a+b)+(a-b)}{\sqrt{(a-b)(a+b)}}=\dfrac{2a}{\sqrt{{{a}^{2}}-{{b}^{2}}}}\]
We know that\[(a-b)(a+b)={{a}^{2}}-{{b}^{2}}\].
\[\begin{align}
& \therefore \sqrt{\dfrac{a+b}{a-b}}+\sqrt{\dfrac{a-b}{a+b}}=\dfrac{2a}{\sqrt{{{a}^{2}}-{{b}^{2}}}} \\
& =\dfrac{2a}{\sqrt{{{a}^{2}}-{{b}^{2}}}}=\dfrac{2a}{a\sqrt{1-{{\left( {}^{b}/{}_{a} \right)}^{2}}}} \\
\end{align}\]
We have been given that\[\dfrac{b}{a}=\tan x\].
Hence substituting the value, we get,
\[\dfrac{2}{\sqrt{1-{{\left( {}^{b}/{}_{a} \right)}^{2}}}}=\dfrac{2}{\sqrt{1-{{\tan }^{2}}x}}\]
We know\[\tan x=\dfrac{\sin x}{\cos x}\], substituting this in equation,
\[\dfrac{2}{\sqrt{1-{{\tan }^{2}}x}}=\dfrac{2}{\sqrt{1-{{\left( \dfrac{\sin x}{\cos x} \right)}^{2}}}}=\dfrac{2}{\sqrt{\dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x}{{{\cos }^{2}}x}}}=\dfrac{2}{\dfrac{\sqrt{{{\cos }^{2}}x-{{\sin }^{2}}x}}{\cos x}}=\dfrac{2\cos x}{\sqrt{{{\cos }^{2}}x-{{\sin }^{2}}x}}\]
We know that\[{{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x\].
\[\therefore \dfrac{2\cos x}{\sqrt{{{\cos }^{2}}x-{{\sin }^{2}}x}}=\dfrac{2\cos x}{\sqrt{\cos 2x}}\]
Hence we got the value of\[\sqrt{\dfrac{a+b}{a-b}}+\sqrt{\dfrac{a-b}{a+b}}\], when \[\dfrac{b}{a}=\tan x\] is \[\dfrac{2\cos x}{\sqrt{\cos 2x}}\].
Option B is the correct answer.
Note:
We have used the basic trigonometric formulae here, which you should remember and it is important to solve expressions like these. Don’t take \[\dfrac{b}{a}=\tan x\Rightarrow b=a\tan x\] and substitute in the expression. It may make it more complex. So first, simplify the expression and then substitute \[\dfrac{b}{a}=\tan x\]
“Complete step-by-step answer:”
Given is that \[\dfrac{b}{a}=\tan x\]
Given is the expression\[\sqrt{\dfrac{a+b}{a-b}}+\sqrt{\dfrac{a-b}{a+b}}\] which can be written as,
\[\dfrac{\sqrt{a+b}}{\sqrt{a-b}}+\dfrac{\sqrt{a-b}}{\sqrt{a+b}}\] [Cross multiply and simplify the expression]
\[\dfrac{{{\left( \sqrt{a+b} \right)}^{2}}+{{\left( \sqrt{a-b} \right)}^{2}}}{\left( \sqrt{a-b} \right)\left( \sqrt{a+b} \right)}=\dfrac{(a+b)+(a-b)}{\sqrt{(a-b)(a+b)}}=\dfrac{2a}{\sqrt{{{a}^{2}}-{{b}^{2}}}}\]
We know that\[(a-b)(a+b)={{a}^{2}}-{{b}^{2}}\].
\[\begin{align}
& \therefore \sqrt{\dfrac{a+b}{a-b}}+\sqrt{\dfrac{a-b}{a+b}}=\dfrac{2a}{\sqrt{{{a}^{2}}-{{b}^{2}}}} \\
& =\dfrac{2a}{\sqrt{{{a}^{2}}-{{b}^{2}}}}=\dfrac{2a}{a\sqrt{1-{{\left( {}^{b}/{}_{a} \right)}^{2}}}} \\
\end{align}\]
We have been given that\[\dfrac{b}{a}=\tan x\].
Hence substituting the value, we get,
\[\dfrac{2}{\sqrt{1-{{\left( {}^{b}/{}_{a} \right)}^{2}}}}=\dfrac{2}{\sqrt{1-{{\tan }^{2}}x}}\]
We know\[\tan x=\dfrac{\sin x}{\cos x}\], substituting this in equation,
\[\dfrac{2}{\sqrt{1-{{\tan }^{2}}x}}=\dfrac{2}{\sqrt{1-{{\left( \dfrac{\sin x}{\cos x} \right)}^{2}}}}=\dfrac{2}{\sqrt{\dfrac{{{\cos }^{2}}x-{{\sin }^{2}}x}{{{\cos }^{2}}x}}}=\dfrac{2}{\dfrac{\sqrt{{{\cos }^{2}}x-{{\sin }^{2}}x}}{\cos x}}=\dfrac{2\cos x}{\sqrt{{{\cos }^{2}}x-{{\sin }^{2}}x}}\]
We know that\[{{\cos }^{2}}x-{{\sin }^{2}}x=\cos 2x\].
\[\therefore \dfrac{2\cos x}{\sqrt{{{\cos }^{2}}x-{{\sin }^{2}}x}}=\dfrac{2\cos x}{\sqrt{\cos 2x}}\]
Hence we got the value of\[\sqrt{\dfrac{a+b}{a-b}}+\sqrt{\dfrac{a-b}{a+b}}\], when \[\dfrac{b}{a}=\tan x\] is \[\dfrac{2\cos x}{\sqrt{\cos 2x}}\].
Option B is the correct answer.
Note:
We have used the basic trigonometric formulae here, which you should remember and it is important to solve expressions like these. Don’t take \[\dfrac{b}{a}=\tan x\Rightarrow b=a\tan x\] and substitute in the expression. It may make it more complex. So first, simplify the expression and then substitute \[\dfrac{b}{a}=\tan x\]
Recently Updated Pages
Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 Accountancy: Engaging Questions & Answers for Success

Trending doubts
Which are the Top 10 Largest Countries of the World?

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Who discovered the cell and how class 12 biology CBSE

Pomato is a Somatic hybrid b Allopolyploid c Natural class 12 biology CBSE
