Answer
Verified
493.5k+ views
Hint: To solve this question, use the properties of determinants. In a determinant, if we subtract a row from another row, the value of the determinant remains the same. Use this property of determinants to solve this question.
Before proceeding with the question, we must know all the properties that will be required to solve this question.
In determinants, the determinant of any matrix $A=\left( \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right)$ is evaluated by the formula,
\[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-fh \right)-b\left( di-fg \right)+c\left( dh-eg \right)...................\left( 1 \right)\]
Also, there is a property in determinants which states that subtracting any row of a determinant from another row of the same determinant doesn’t change the value of the determinant. $...........\left( 2 \right)$
In the question, we are given that $\left| \begin{matrix}
p & b & c \\
a & q & c \\
a & b & r \\
\end{matrix} \right|=0$ and we have to find the value of $\dfrac{p}{p-a}+\dfrac{q}{q-b}+\dfrac{r}{r-c}$.
$\left| \begin{matrix}
p & b & c \\
a & q & c \\
a & b & r \\
\end{matrix} \right|=0$
Using property $\left( 2 \right)$, subtracting row 3 from row 2, we get,
$\begin{align}
& \left| \begin{matrix}
p & b & c \\
a-a & q-b & c-r \\
a & b & r \\
\end{matrix} \right|=0 \\
& \Rightarrow \left| \begin{matrix}
p & b & c \\
0 & q-b & c-r \\
a & b & r \\
\end{matrix} \right|=0 \\
\end{align}$
Using property $\left( 2 \right)$, subtracting row 3 from row 1, we get,
$\begin{align}
& \left| \begin{matrix}
p-a & b-b & c-r \\
0 & q-b & c-r \\
a & b & r \\
\end{matrix} \right|=0 \\
& \Rightarrow \left| \begin{matrix}
p-a & 0 & c-r \\
0 & q-b & c-r \\
a & b & r \\
\end{matrix} \right|=0 \\
\end{align}$
Using formula $\left( 1 \right)$ in the above equation, we get,
$\begin{align}
& \left( p-a \right)\left[ r\left( q-b \right)-b\left( c-r \right) \right]-0\left[ 0.b-a\left( q-b \right) \right]+\left( c-r \right)\left[ 0.b-a\left( q-b \right) \right]=0 \\
& \Rightarrow \left( p-a \right)\left[ r\left( q-b \right)-b\left( c-r \right) \right]-a\left( c-r \right)\left( q-b \right)=0 \\
& \Rightarrow r\left( p-a \right)\left( q-b \right)+b\left( p-a \right)\left( r-c \right)+a\left( r-c \right)\left( q-b \right)=0 \\
\end{align}$
Dividing the above equation by $\left( p-a \right)\left( q-b \right)\left( r-c \right)$, we get,
\[\begin{align}
& \dfrac{r\left( p-a \right)\left( q-b \right)}{\left( p-a \right)\left( q-b \right)\left( r-c \right)}+\dfrac{b\left( p-a \right)\left( r-c \right)}{\left( p-a \right)\left( q-b \right)\left( r-c \right)}+\dfrac{a\left( r-c \right)\left( q-b \right)}{\left( p-a \right)\left( q-b \right)\left( r-c \right)}=0 \\
& \Rightarrow \dfrac{r}{\left( r-c \right)}+\dfrac{b}{\left( q-b \right)}+\dfrac{a}{\left( p-a \right)}=0 \\
\end{align}\]
The above equation can also be written as,
\[\begin{align}
& \dfrac{r}{\left( r-c \right)}+\dfrac{b-q+q}{\left( q-b \right)}+\dfrac{a-p+p}{\left( p-a \right)}=0 \\
& \Rightarrow \dfrac{r}{\left( r-c \right)}+\dfrac{b-q}{\left( q-b \right)}+\dfrac{q}{\left( q-b \right)}+\dfrac{a-p}{\left( p-a \right)}+\dfrac{p}{\left( p-a \right)}=0 \\
& \Rightarrow \dfrac{p}{\left( p-a \right)}+\dfrac{q}{\left( q-b \right)}+\dfrac{r}{\left( r-c \right)}+\left( -1 \right)+\left( -1 \right)=0 \\
& \Rightarrow \dfrac{p}{\left( p-a \right)}+\dfrac{q}{\left( q-b \right)}+\dfrac{r}{\left( r-c \right)}=2 \\
\end{align}\]
Hence, the answer is 2.
Note: One can also do this question without using the property $\left( 2 \right)$ i.e. subtracting one row from another row of the determinant does not affect the value of the determinant. If one evaluates the determinant by using this property of determinants, he/she has to factorise the final expression which he/she will get after evaluating the determinant without using that property. This process of factorisation will take a lot of time and thus, this method will take a much longer time to solve this question.
Before proceeding with the question, we must know all the properties that will be required to solve this question.
In determinants, the determinant of any matrix $A=\left( \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right)$ is evaluated by the formula,
\[\left| \begin{matrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{matrix} \right|=a\left( ei-fh \right)-b\left( di-fg \right)+c\left( dh-eg \right)...................\left( 1 \right)\]
Also, there is a property in determinants which states that subtracting any row of a determinant from another row of the same determinant doesn’t change the value of the determinant. $...........\left( 2 \right)$
In the question, we are given that $\left| \begin{matrix}
p & b & c \\
a & q & c \\
a & b & r \\
\end{matrix} \right|=0$ and we have to find the value of $\dfrac{p}{p-a}+\dfrac{q}{q-b}+\dfrac{r}{r-c}$.
$\left| \begin{matrix}
p & b & c \\
a & q & c \\
a & b & r \\
\end{matrix} \right|=0$
Using property $\left( 2 \right)$, subtracting row 3 from row 2, we get,
$\begin{align}
& \left| \begin{matrix}
p & b & c \\
a-a & q-b & c-r \\
a & b & r \\
\end{matrix} \right|=0 \\
& \Rightarrow \left| \begin{matrix}
p & b & c \\
0 & q-b & c-r \\
a & b & r \\
\end{matrix} \right|=0 \\
\end{align}$
Using property $\left( 2 \right)$, subtracting row 3 from row 1, we get,
$\begin{align}
& \left| \begin{matrix}
p-a & b-b & c-r \\
0 & q-b & c-r \\
a & b & r \\
\end{matrix} \right|=0 \\
& \Rightarrow \left| \begin{matrix}
p-a & 0 & c-r \\
0 & q-b & c-r \\
a & b & r \\
\end{matrix} \right|=0 \\
\end{align}$
Using formula $\left( 1 \right)$ in the above equation, we get,
$\begin{align}
& \left( p-a \right)\left[ r\left( q-b \right)-b\left( c-r \right) \right]-0\left[ 0.b-a\left( q-b \right) \right]+\left( c-r \right)\left[ 0.b-a\left( q-b \right) \right]=0 \\
& \Rightarrow \left( p-a \right)\left[ r\left( q-b \right)-b\left( c-r \right) \right]-a\left( c-r \right)\left( q-b \right)=0 \\
& \Rightarrow r\left( p-a \right)\left( q-b \right)+b\left( p-a \right)\left( r-c \right)+a\left( r-c \right)\left( q-b \right)=0 \\
\end{align}$
Dividing the above equation by $\left( p-a \right)\left( q-b \right)\left( r-c \right)$, we get,
\[\begin{align}
& \dfrac{r\left( p-a \right)\left( q-b \right)}{\left( p-a \right)\left( q-b \right)\left( r-c \right)}+\dfrac{b\left( p-a \right)\left( r-c \right)}{\left( p-a \right)\left( q-b \right)\left( r-c \right)}+\dfrac{a\left( r-c \right)\left( q-b \right)}{\left( p-a \right)\left( q-b \right)\left( r-c \right)}=0 \\
& \Rightarrow \dfrac{r}{\left( r-c \right)}+\dfrac{b}{\left( q-b \right)}+\dfrac{a}{\left( p-a \right)}=0 \\
\end{align}\]
The above equation can also be written as,
\[\begin{align}
& \dfrac{r}{\left( r-c \right)}+\dfrac{b-q+q}{\left( q-b \right)}+\dfrac{a-p+p}{\left( p-a \right)}=0 \\
& \Rightarrow \dfrac{r}{\left( r-c \right)}+\dfrac{b-q}{\left( q-b \right)}+\dfrac{q}{\left( q-b \right)}+\dfrac{a-p}{\left( p-a \right)}+\dfrac{p}{\left( p-a \right)}=0 \\
& \Rightarrow \dfrac{p}{\left( p-a \right)}+\dfrac{q}{\left( q-b \right)}+\dfrac{r}{\left( r-c \right)}+\left( -1 \right)+\left( -1 \right)=0 \\
& \Rightarrow \dfrac{p}{\left( p-a \right)}+\dfrac{q}{\left( q-b \right)}+\dfrac{r}{\left( r-c \right)}=2 \\
\end{align}\]
Hence, the answer is 2.
Note: One can also do this question without using the property $\left( 2 \right)$ i.e. subtracting one row from another row of the determinant does not affect the value of the determinant. If one evaluates the determinant by using this property of determinants, he/she has to factorise the final expression which he/she will get after evaluating the determinant without using that property. This process of factorisation will take a lot of time and thus, this method will take a much longer time to solve this question.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE