If \[4P(A) = 6P(B) = 10P(A \cap B) = 1\] then $P(\frac{B}{A}) = $ -------.
A.$\frac{2}{5}$
B.$\frac{3}{5}$
C.$\frac{7}{{10}}$
D.$\frac{{19}}{{60}}$
Answer
363.6k+ views
Hint: Here, to solve the given problem we use the conditional probability concept.
Given,
\[4P(A) = 6P(B) = 10P(A \cap B) = 1 \to (1)\]
Now, from equation 1, let us find ‘$P(A)$’, ‘$P(B)$’and ‘$P(A \cap B)$’ values.
$4P(A) = 1 \Rightarrow P(A) = \frac{1}{4}$
$6P(B) = 1 \Rightarrow P(B) = \frac{1}{6}$
$10P(A \cap B) = 1 \Rightarrow P(A \cap B) = \frac{1}{{10}}$
Here, we need to find the value of $P(B/A)$ i.e.., the probability of the event B after the
occurrence of event A.
So, to find the $P(B/A)$ let us consider the concept of conditional probability i.e..,
$P(B/A) = \frac{{P(A \cap B)}}{{P(A)}} \to (2)$
Let us substitute the obtained values of $P(A \cap B)$ and $P(A)$ in equation 2, we get
$
\Rightarrow P(B/A) = \frac{{P(A \cap B)}}{{P(A)}} \\
\Rightarrow P(B/A) = \frac{{\frac{1}{{10}}}}{{\frac{1}{4}}} \\
\Rightarrow P(B/A) = \frac{4}{{10}} \\
\Rightarrow P(B/A) = \frac{2}{5} \\
$
Hence, the obtained value of $P(B/A)$ is$\frac{2}{5}$.
Hence the correct option for the given question is ‘A’.
Note: As, to find the conditional probability of $P(B/A) = \frac{{P(A \cap B)}}{{P(A)}}$i.e.., the
probability of the event B after the occurrence of event A .The probability is defined only after the occurrence of event A i.e.., $P(A)$ should be greater than zero.
Given,
\[4P(A) = 6P(B) = 10P(A \cap B) = 1 \to (1)\]
Now, from equation 1, let us find ‘$P(A)$’, ‘$P(B)$’and ‘$P(A \cap B)$’ values.
$4P(A) = 1 \Rightarrow P(A) = \frac{1}{4}$
$6P(B) = 1 \Rightarrow P(B) = \frac{1}{6}$
$10P(A \cap B) = 1 \Rightarrow P(A \cap B) = \frac{1}{{10}}$
Here, we need to find the value of $P(B/A)$ i.e.., the probability of the event B after the
occurrence of event A.
So, to find the $P(B/A)$ let us consider the concept of conditional probability i.e..,
$P(B/A) = \frac{{P(A \cap B)}}{{P(A)}} \to (2)$
Let us substitute the obtained values of $P(A \cap B)$ and $P(A)$ in equation 2, we get
$
\Rightarrow P(B/A) = \frac{{P(A \cap B)}}{{P(A)}} \\
\Rightarrow P(B/A) = \frac{{\frac{1}{{10}}}}{{\frac{1}{4}}} \\
\Rightarrow P(B/A) = \frac{4}{{10}} \\
\Rightarrow P(B/A) = \frac{2}{5} \\
$
Hence, the obtained value of $P(B/A)$ is$\frac{2}{5}$.
Hence the correct option for the given question is ‘A’.
Note: As, to find the conditional probability of $P(B/A) = \frac{{P(A \cap B)}}{{P(A)}}$i.e.., the
probability of the event B after the occurrence of event A .The probability is defined only after the occurrence of event A i.e.., $P(A)$ should be greater than zero.
Last updated date: 25th Sep 2023
•
Total views: 363.6k
•
Views today: 9.63k
Recently Updated Pages
What do you mean by public facilities

Difference between hardware and software

Disadvantages of Advertising

10 Advantages and Disadvantages of Plastic

What do you mean by Endemic Species

What is the Botanical Name of Dog , Cat , Turmeric , Mushroom , Palm

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

Draw a welllabelled diagram of a plant cell class 11 biology CBSE

What is the nature of the Gaussian surface involved class 11 physics CBSE

Distinguish between Mitosis and Meiosis class 11 biology CBSE

Difference between physical and chemical change class 11 chemistry CBSE

Draw a diagram of nephron and explain its structur class 11 biology CBSE

Can anyone list 10 advantages and disadvantages of friction
