Answer
Verified
423.9k+ views
Hint: Binomial theorem is a method used to expand a binomial term that is raise to some power of positive integer. According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.
Formula used: ${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$,
where x and y are real numbers and n is a positive integer (a natural number).
${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Complete step-by-step solution:
Let us first understand what is the binomial theorem.
Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer.
According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.
Suppose we have an expression ${{(x+y)}^{n}}$, where x and y are real numbers and n is a positive integer (a natural number).
Then, the binomial expansion of the above expression is given as ${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$.
Here, i is a natural number taking values from 0 to n.
When we expand the summation we get that ${{(x+y)}^{n}}={}^{n}{{C}_{0}}{{x}^{n-0}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+.......+{}^{n}{{C}_{n-1}}{{x}^{n-(n-1)}}{{y}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n-n}}{{y}^{n}}$.
In the given question, $n=5$,
Therefore, the given expression can expanded, with the help of binomial theorem as
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}{{(2{{x}^{3}})}^{5-0}}{{(1)}^{0}}+{}^{5}{{C}_{1}}{{(2{{x}^{3}})}^{5-1}}{{(1)}^{1}}+{}^{5}{{C}_{2}}{{(2{{x}^{3}})}^{5-2}}{{(1)}^{2}}+{}^{5}{{C}_{3}}{{(2{{x}^{3}})}^{5-3}}{{(1)}^{3}}+{}^{5}{{C}_{4}}{{(2{{x}^{3}})}^{5-4}}{{(1)}^{4}}+{}^{5}{{C}_{5}}{{(2{{x}^{3}})}^{5-5}}{{(1)}^{5}}$
This equation can be further simplified to
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}{{(2{{x}^{3}})}^{5}}+{}^{5}{{C}_{1}}{{(2{{x}^{3}})}^{4}}+{}^{5}{{C}_{2}}{{(2{{x}^{3}})}^{3}}+{}^{5}{{C}_{3}}{{(2{{x}^{3}})}^{2}}+{}^{5}{{C}_{4}}{{(2{{x}^{3}})}^{1}}+{}^{5}{{C}_{5}}{{(2{{x}^{3}})}^{0}}$
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}(32{{x}^{15}})+{}^{5}{{C}_{1}}(16{{x}^{12}})+{}^{5}{{C}_{2}}(8{{x}^{9}})+{}^{5}{{C}_{3}}(4{{x}^{6}})+{}^{5}{{C}_{4}}(2{{x}^{3}})+{}^{5}{{C}_{5}}(1)$ ….. (i)
Now, we shall use the formula ${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Therefore, equation (i) can be simplified to
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=\dfrac{5!}{0!(5-0)!}(32{{x}^{15}})-\dfrac{5!}{1!(5-1)!}(16{{x}^{12}})+\dfrac{5!}{2!(5-2)!}(8{{x}^{9}})-\dfrac{5!}{3!(5-3)!}(4{{x}^{6}})+\dfrac{5!}{4!(5-4)!}(2{{x}^{3}})+\dfrac{5!}{5!(5-5)!}$
With this, we get that
$\Rightarrow{{(2{{x}^{3}}+1)}^{5}}=\dfrac{5!}{5!}(32{{x}^{15}})+\dfrac{5!}{1!(4)!}(16{{x}^{12}})+\dfrac{5!}{2!(3)!}(8{{x}^{9}})+\dfrac{5!}{3!(2)!}(4{{x}^{6}})+\dfrac{5!}{4!(1)!}(2{{x}^{3}})+\dfrac{5!}{5!(0)!}$
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=32{{x}^{15}}-(5)(16{{x}^{12}})+\left( \dfrac{5\times 4}{2} \right)(8{{x}^{9}})+\left( \dfrac{5\times 4\times 3}{3\times 2} \right)(4{{x}^{6}})+(5)(2{{x}^{3}})+1$
Finally,
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=32{{x}^{15}}+80{{x}^{12}})+80{{x}^{9}}+40{{x}^{6}}+10{{x}^{3}})+1$
Hence, we found the expansion of the given expression with the help of binomial theorem.
Note: Note that when we expand an expression with the help of binomial theorem, the series consists of (n+1) terms. If you do not use the formula of combination ${}^{n}{{C}_{i}}$, then you can make use of Pascal's triangle and select the row that has (n+1) elements (numbers).
Formula used: ${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$,
where x and y are real numbers and n is a positive integer (a natural number).
${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Complete step-by-step solution:
Let us first understand what is the binomial theorem.
Binomial theorem is a method used to expand a binomial term that is raised to some power of positive integer.
According to binomial theorem, the nth power of the sum of two numbers (say a and b) can be expressed (expanded) as the sum or series of (n+1) terms, provided that ‘n’ is a positive integer.
Suppose we have an expression ${{(x+y)}^{n}}$, where x and y are real numbers and n is a positive integer (a natural number).
Then, the binomial expansion of the above expression is given as ${{(x+y)}^{n}}=\sum\limits_{i=0}^{n}{{}^{n}{{C}_{i}}{{x}^{n-i}}{{y}^{i}}}$.
Here, i is a natural number taking values from 0 to n.
When we expand the summation we get that ${{(x+y)}^{n}}={}^{n}{{C}_{0}}{{x}^{n-0}}{{y}^{0}}+{}^{n}{{C}_{1}}{{x}^{n-1}}{{y}^{1}}+{}^{n}{{C}_{2}}{{x}^{n-2}}{{y}^{2}}+.......+{}^{n}{{C}_{n-1}}{{x}^{n-(n-1)}}{{y}^{n-1}}+{}^{n}{{C}_{n}}{{x}^{n-n}}{{y}^{n}}$.
In the given question, $n=5$,
Therefore, the given expression can expanded, with the help of binomial theorem as
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}{{(2{{x}^{3}})}^{5-0}}{{(1)}^{0}}+{}^{5}{{C}_{1}}{{(2{{x}^{3}})}^{5-1}}{{(1)}^{1}}+{}^{5}{{C}_{2}}{{(2{{x}^{3}})}^{5-2}}{{(1)}^{2}}+{}^{5}{{C}_{3}}{{(2{{x}^{3}})}^{5-3}}{{(1)}^{3}}+{}^{5}{{C}_{4}}{{(2{{x}^{3}})}^{5-4}}{{(1)}^{4}}+{}^{5}{{C}_{5}}{{(2{{x}^{3}})}^{5-5}}{{(1)}^{5}}$
This equation can be further simplified to
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}{{(2{{x}^{3}})}^{5}}+{}^{5}{{C}_{1}}{{(2{{x}^{3}})}^{4}}+{}^{5}{{C}_{2}}{{(2{{x}^{3}})}^{3}}+{}^{5}{{C}_{3}}{{(2{{x}^{3}})}^{2}}+{}^{5}{{C}_{4}}{{(2{{x}^{3}})}^{1}}+{}^{5}{{C}_{5}}{{(2{{x}^{3}})}^{0}}$
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}={}^{5}{{C}_{0}}(32{{x}^{15}})+{}^{5}{{C}_{1}}(16{{x}^{12}})+{}^{5}{{C}_{2}}(8{{x}^{9}})+{}^{5}{{C}_{3}}(4{{x}^{6}})+{}^{5}{{C}_{4}}(2{{x}^{3}})+{}^{5}{{C}_{5}}(1)$ ….. (i)
Now, we shall use the formula ${}^{n}{{C}_{i}}=\dfrac{n!}{i!(n-i)!}$
Therefore, equation (i) can be simplified to
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=\dfrac{5!}{0!(5-0)!}(32{{x}^{15}})-\dfrac{5!}{1!(5-1)!}(16{{x}^{12}})+\dfrac{5!}{2!(5-2)!}(8{{x}^{9}})-\dfrac{5!}{3!(5-3)!}(4{{x}^{6}})+\dfrac{5!}{4!(5-4)!}(2{{x}^{3}})+\dfrac{5!}{5!(5-5)!}$
With this, we get that
$\Rightarrow{{(2{{x}^{3}}+1)}^{5}}=\dfrac{5!}{5!}(32{{x}^{15}})+\dfrac{5!}{1!(4)!}(16{{x}^{12}})+\dfrac{5!}{2!(3)!}(8{{x}^{9}})+\dfrac{5!}{3!(2)!}(4{{x}^{6}})+\dfrac{5!}{4!(1)!}(2{{x}^{3}})+\dfrac{5!}{5!(0)!}$
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=32{{x}^{15}}-(5)(16{{x}^{12}})+\left( \dfrac{5\times 4}{2} \right)(8{{x}^{9}})+\left( \dfrac{5\times 4\times 3}{3\times 2} \right)(4{{x}^{6}})+(5)(2{{x}^{3}})+1$
Finally,
$\Rightarrow {{(2{{x}^{3}}+1)}^{5}}=32{{x}^{15}}+80{{x}^{12}})+80{{x}^{9}}+40{{x}^{6}}+10{{x}^{3}})+1$
Hence, we found the expansion of the given expression with the help of binomial theorem.
Note: Note that when we expand an expression with the help of binomial theorem, the series consists of (n+1) terms. If you do not use the formula of combination ${}^{n}{{C}_{i}}$, then you can make use of Pascal's triangle and select the row that has (n+1) elements (numbers).
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Sound waves travel faster in air than in water True class 12 physics CBSE
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE