
Heat is flowing through two cylindrical rods of the same material. The diameters of the rods are in the ratio of 1:2 and their lengths are in the ratio of 2:1. If the temperature difference between their ends is the same, then find the ratio of amounts of heat conducted through them per unit of time.
A. 1:1
B. 2:1
C. 1:4
D. 1:8
Answer
233.1k+ views
Hint:>In order to solve this problem we need to understand the amount of heat flow in the conductor. It is defined as the transfer of heat down a temperature gradient between two bodies in close physical contact.
Formula Used:
To find the rate of heat flow the formula is,
\[\dfrac{{dQ}}{{dt}} = - \dfrac{{KAT}}{L}\]
Where, A is cross sectional area, \[T\] is temperature and l is length of the cylinder.
Complete step by step solution:
Here, the heat is flowing through two cylindrical rods of the same material. The diameters of the rods are in the ratio of 1:2 and their lengths are in the ratio of 2:1. If the temperature difference between their ends is the same, then we need to find the ratio of amounts of heat conducted through them per unit of time. The rate of flow of heat is,
\[\dfrac{{dQ}}{{dt}} = - \dfrac{{KAT}}{L}\]
Since we have two cylindrical rods,
\[\dfrac{{d{Q_1}}}{{dt}} = - \dfrac{{K{A_1}T}}{{{L_1}}}\] and \[\dfrac{{d{Q_2}}}{{dt}} = - \dfrac{{K{A_2}T}}{{{L_2}}}\]
Now, if we take the ratios of these two, we get,
\[\dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{\dfrac{{K{A_1}T}}{{{L_1}}}}}{{\dfrac{{K{A_2}T}}{{{L_2}}}}} \\ \]
\[\Rightarrow \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{\dfrac{{{A_1}}}{{{L_1}}}}}{{\dfrac{{{A_2}}}{{{L_2}}}}} \\ \]
\[\Rightarrow \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{{A_1}}}{{{L_1}}} \times \dfrac{{{L_2}}}{{{A_2}}} \\ \]
We know that area, \[A = \pi {r^2}\]
\[\dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{\pi {r_1}^2}}{{{L_1}}} \times \dfrac{{{L_2}}}{{\pi {r_2}^2}}\]
\[\Rightarrow \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{{r_1}^2}}{{{r_2}^2}} \times \dfrac{{{L_2}}}{{{L_1}}}\]………….. (1)
Here, ratio of diameters is 1:2 that is,
\[\dfrac{{{d_1}}}{{{d_2}}} = \dfrac{1}{2}\] and \[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{1}{2}\]
The lengths have the ratio of,
\[\dfrac{{{l_1}}}{{{l_2}}} = \dfrac{2}{1}\]
Then, equation (1) will become,
\[\dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{1}{4} \times \dfrac{1}{2} \\ \]
\[\therefore \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{1}{8} \\ \]
That is, \[\dfrac{{d{Q_1}}}{{dt}}:\dfrac{{d{Q_2}}}{{dt}} = 1:8\]
Therefore, the ratio of amounts of heat conducted through them per unit of time is 1:8
Hence, option D is the correct answer.
Note: The rate of conductive heat transfer depends on temperature gradient between the two bodies, the area of contact and the length of the conductor.
Formula Used:
To find the rate of heat flow the formula is,
\[\dfrac{{dQ}}{{dt}} = - \dfrac{{KAT}}{L}\]
Where, A is cross sectional area, \[T\] is temperature and l is length of the cylinder.
Complete step by step solution:
Here, the heat is flowing through two cylindrical rods of the same material. The diameters of the rods are in the ratio of 1:2 and their lengths are in the ratio of 2:1. If the temperature difference between their ends is the same, then we need to find the ratio of amounts of heat conducted through them per unit of time. The rate of flow of heat is,
\[\dfrac{{dQ}}{{dt}} = - \dfrac{{KAT}}{L}\]
Since we have two cylindrical rods,
\[\dfrac{{d{Q_1}}}{{dt}} = - \dfrac{{K{A_1}T}}{{{L_1}}}\] and \[\dfrac{{d{Q_2}}}{{dt}} = - \dfrac{{K{A_2}T}}{{{L_2}}}\]
Now, if we take the ratios of these two, we get,
\[\dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{\dfrac{{K{A_1}T}}{{{L_1}}}}}{{\dfrac{{K{A_2}T}}{{{L_2}}}}} \\ \]
\[\Rightarrow \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{\dfrac{{{A_1}}}{{{L_1}}}}}{{\dfrac{{{A_2}}}{{{L_2}}}}} \\ \]
\[\Rightarrow \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{{A_1}}}{{{L_1}}} \times \dfrac{{{L_2}}}{{{A_2}}} \\ \]
We know that area, \[A = \pi {r^2}\]
\[\dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{\pi {r_1}^2}}{{{L_1}}} \times \dfrac{{{L_2}}}{{\pi {r_2}^2}}\]
\[\Rightarrow \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{{{r_1}^2}}{{{r_2}^2}} \times \dfrac{{{L_2}}}{{{L_1}}}\]………….. (1)
Here, ratio of diameters is 1:2 that is,
\[\dfrac{{{d_1}}}{{{d_2}}} = \dfrac{1}{2}\] and \[\dfrac{{{r_1}}}{{{r_2}}} = \dfrac{1}{2}\]
The lengths have the ratio of,
\[\dfrac{{{l_1}}}{{{l_2}}} = \dfrac{2}{1}\]
Then, equation (1) will become,
\[\dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{1}{4} \times \dfrac{1}{2} \\ \]
\[\therefore \dfrac{{\dfrac{{d{Q_1}}}{{dt}}}}{{\dfrac{{d{Q_2}}}{{dt}}}} = \dfrac{1}{8} \\ \]
That is, \[\dfrac{{d{Q_1}}}{{dt}}:\dfrac{{d{Q_2}}}{{dt}} = 1:8\]
Therefore, the ratio of amounts of heat conducted through them per unit of time is 1:8
Hence, option D is the correct answer.
Note: The rate of conductive heat transfer depends on temperature gradient between the two bodies, the area of contact and the length of the conductor.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

