
What will happen, when the velocity of a body is doubled?
(A) kinetic energy is doubled
(B) acceleration is doubled
(C) momentum is doubled
(D) potential energy is doubled
Answer
511.2k+ views
Hint: Velocity is defined as the rate of change of position of an object with respect to time. And the velocity is also defined as the amount of distance travelled by an object in a given amount of time. By using the velocity formula, the solution can be determined.
Complete step by step solution
1. Relation between velocity and kinetic energy
$KE = \dfrac{1}{2} \times m{v^2}$
Where, $KE$ is the kinetic energy, $m$ is the mass, $v$ is the velocity.
$KE = \dfrac{1}{2} \times m{v^2}$
If the velocity is doubled,
$KE = \dfrac{1}{2} \times m{\left( {2v} \right)^2}$
Squaring the terms inside the bracket,
$KE = \dfrac{1}{2} \times m\left( {4{v^2}} \right)$
By arranging the above equation,
$KE = 4 \times \left( {\dfrac{1}{2} \times m{v^2}} \right)$
By this equation, we clearly understand that the velocity is doubled then the kinetic energy becomes 4 times.
2. Relation between velocity and acceleration
Acceleration is the rate of change of velocity with respect to time. If the velocity is doubled, then it is due to acceleration only. In other words, by changing the acceleration, the velocity is doubled. So, if the velocity is doubled, the acceleration will not double.
3. Relation between velocity and momentum
By Linear momentum equation,
$p = m \times v$
Where, $p$ is the momentum, $m$ is the mass, $v$ is the velocity.
$p = m \times v$
As the velocity is doubled,
$p = m \times \left( {2v} \right)$
By arranging the above equation,
$p = 2\left( {mv} \right)$
From the above equation, it is clear that the velocity is doubled then the momentum also doubled.
4.Relation between velocity and potential energy:
Actually, there is no relationship between velocity and potential energy. If the potential energy is changed to kinetic energy, then there is a relation between velocity and kinetic energy.
Hence, the option (C) is correct.
Note: The velocity of the object is doubled by changing the acceleration only. If the velocity is doubled its kinetic energy is multiplied by four times. And there is no relationship between the velocity and potential energy. So, if the velocity is doubled, momentum also doubles.
Complete step by step solution
1. Relation between velocity and kinetic energy
$KE = \dfrac{1}{2} \times m{v^2}$
Where, $KE$ is the kinetic energy, $m$ is the mass, $v$ is the velocity.
$KE = \dfrac{1}{2} \times m{v^2}$
If the velocity is doubled,
$KE = \dfrac{1}{2} \times m{\left( {2v} \right)^2}$
Squaring the terms inside the bracket,
$KE = \dfrac{1}{2} \times m\left( {4{v^2}} \right)$
By arranging the above equation,
$KE = 4 \times \left( {\dfrac{1}{2} \times m{v^2}} \right)$
By this equation, we clearly understand that the velocity is doubled then the kinetic energy becomes 4 times.
2. Relation between velocity and acceleration
Acceleration is the rate of change of velocity with respect to time. If the velocity is doubled, then it is due to acceleration only. In other words, by changing the acceleration, the velocity is doubled. So, if the velocity is doubled, the acceleration will not double.
3. Relation between velocity and momentum
By Linear momentum equation,
$p = m \times v$
Where, $p$ is the momentum, $m$ is the mass, $v$ is the velocity.
$p = m \times v$
As the velocity is doubled,
$p = m \times \left( {2v} \right)$
By arranging the above equation,
$p = 2\left( {mv} \right)$
From the above equation, it is clear that the velocity is doubled then the momentum also doubled.
4.Relation between velocity and potential energy:
Actually, there is no relationship between velocity and potential energy. If the potential energy is changed to kinetic energy, then there is a relation between velocity and kinetic energy.
Hence, the option (C) is correct.
Note: The velocity of the object is doubled by changing the acceleration only. If the velocity is doubled its kinetic energy is multiplied by four times. And there is no relationship between the velocity and potential energy. So, if the velocity is doubled, momentum also doubles.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

