Find the value of $^r{C_5}$ if $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$.
Last updated date: 17th Mar 2023
•
Total views: 304.2k
•
Views today: 4.83k
Answer
304.2k+ views
Hint: The formula for $^n{C_r}$ is $\dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. Use this formula to find out the value of $r$. And then put the value of $r$ in $^r{C_5}$.
Complete step-by-step answer:
According to the question, it is given that $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$.
We know that, $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. Using this formula we’ll get:
\[
{ \Rightarrow ^{18}}{C_r}{ = ^{18}}{C_{r + 2}} \\
\Rightarrow \dfrac{{18!}}{{r!\left( {18 - r} \right)!}} = \dfrac{{18!}}{{\left( {r + 2} \right)!\left( {18 - r - 2} \right)!}} \\
\Rightarrow \dfrac{1}{{r!\left( {18 - r} \right)!}} = \dfrac{1}{{\left( {r + 2} \right)!\left( {16 - r} \right)!}} \\
\Rightarrow r!\left( {18 - r} \right)! = \left( {r + 2} \right)!\left( {16 - r} \right)! \\
\]
We know that, $n! = n\left( {n - 1} \right)\left( {n - 2} \right).....3 \times 2 \times 1$. Using this, we’ll get:
\[
\Rightarrow r!\left( {18 - r} \right)\left( {18 - r - 1} \right)\left( {18 - r - 2} \right)! = \left( {r + 2} \right)\left( {r + 1} \right)r!\left( {16 - r} \right)! \\
\Rightarrow \left( {18 - r} \right)\left( {17 - r} \right)\left( {16 - r} \right)! = \left( {r + 2} \right)\left( {r + 1} \right)\left( {16 - r} \right)! \\
\Rightarrow \left( {18 - r} \right)\left( {17 - r} \right) = \left( {r + 2} \right)\left( {r + 1} \right) \\
\Rightarrow 306 - 18r - 17r + {r^2} = {r^2} + r + 2r + 2 \\
\Rightarrow 306 - 35r = 3r + 2 \\
\Rightarrow 38r = 304 \\
\Rightarrow r = 8 \\
\]
So, the value of $r$ is 8.
We have to find out the value of $^r{C_5}$. Putting $r = 8$, we’ll get:
${ \Rightarrow ^r}{C_5}{ = ^8}{C_5}$
Using formula $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, we’ll get:
$
{ \Rightarrow ^8}{C_5} = \dfrac{{8!}}{{5! \times 3!}} \\
{ \Rightarrow ^8}{C_5} = \dfrac{{8 \times 7 \times 6 \times 5!}}{{5! \times 6}} \\
{ \Rightarrow ^8}{C_5} = 56 \\
$
Thus, the value of $^r{C_5}$ is 56.
Note: This question can be solved by another method as:
We know that if $^n{C_a}{ = ^n}{C_b}$ then either $a = b$ or $a + b = n$ must be true.
So for $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$, we have:
$ \Rightarrow r = r + 2{\text{ or }}r + r + 2 = 18$
First condition is not true. So we have:
$
\Rightarrow r + r + 2 = 18 \\
\Rightarrow 2r + 2 = 18 \\
\Rightarrow 2r = 16 \\
\Rightarrow r = 8 \\
$
We have calculated the value of $r$. While putting it in $^r{C_5}$ we will get the same result.
Complete step-by-step answer:
According to the question, it is given that $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$.
We know that, $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. Using this formula we’ll get:
\[
{ \Rightarrow ^{18}}{C_r}{ = ^{18}}{C_{r + 2}} \\
\Rightarrow \dfrac{{18!}}{{r!\left( {18 - r} \right)!}} = \dfrac{{18!}}{{\left( {r + 2} \right)!\left( {18 - r - 2} \right)!}} \\
\Rightarrow \dfrac{1}{{r!\left( {18 - r} \right)!}} = \dfrac{1}{{\left( {r + 2} \right)!\left( {16 - r} \right)!}} \\
\Rightarrow r!\left( {18 - r} \right)! = \left( {r + 2} \right)!\left( {16 - r} \right)! \\
\]
We know that, $n! = n\left( {n - 1} \right)\left( {n - 2} \right).....3 \times 2 \times 1$. Using this, we’ll get:
\[
\Rightarrow r!\left( {18 - r} \right)\left( {18 - r - 1} \right)\left( {18 - r - 2} \right)! = \left( {r + 2} \right)\left( {r + 1} \right)r!\left( {16 - r} \right)! \\
\Rightarrow \left( {18 - r} \right)\left( {17 - r} \right)\left( {16 - r} \right)! = \left( {r + 2} \right)\left( {r + 1} \right)\left( {16 - r} \right)! \\
\Rightarrow \left( {18 - r} \right)\left( {17 - r} \right) = \left( {r + 2} \right)\left( {r + 1} \right) \\
\Rightarrow 306 - 18r - 17r + {r^2} = {r^2} + r + 2r + 2 \\
\Rightarrow 306 - 35r = 3r + 2 \\
\Rightarrow 38r = 304 \\
\Rightarrow r = 8 \\
\]
So, the value of $r$ is 8.
We have to find out the value of $^r{C_5}$. Putting $r = 8$, we’ll get:
${ \Rightarrow ^r}{C_5}{ = ^8}{C_5}$
Using formula $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, we’ll get:
$
{ \Rightarrow ^8}{C_5} = \dfrac{{8!}}{{5! \times 3!}} \\
{ \Rightarrow ^8}{C_5} = \dfrac{{8 \times 7 \times 6 \times 5!}}{{5! \times 6}} \\
{ \Rightarrow ^8}{C_5} = 56 \\
$
Thus, the value of $^r{C_5}$ is 56.
Note: This question can be solved by another method as:
We know that if $^n{C_a}{ = ^n}{C_b}$ then either $a = b$ or $a + b = n$ must be true.
So for $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$, we have:
$ \Rightarrow r = r + 2{\text{ or }}r + r + 2 = 18$
First condition is not true. So we have:
$
\Rightarrow r + r + 2 = 18 \\
\Rightarrow 2r + 2 = 18 \\
\Rightarrow 2r = 16 \\
\Rightarrow r = 8 \\
$
We have calculated the value of $r$. While putting it in $^r{C_5}$ we will get the same result.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
