
Find the value of $^r{C_5}$ if $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$.
Answer
605.1k+ views
Hint: The formula for $^n{C_r}$ is $\dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. Use this formula to find out the value of $r$. And then put the value of $r$ in $^r{C_5}$.
Complete step-by-step answer:
According to the question, it is given that $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$.
We know that, $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. Using this formula we’ll get:
\[
{ \Rightarrow ^{18}}{C_r}{ = ^{18}}{C_{r + 2}} \\
\Rightarrow \dfrac{{18!}}{{r!\left( {18 - r} \right)!}} = \dfrac{{18!}}{{\left( {r + 2} \right)!\left( {18 - r - 2} \right)!}} \\
\Rightarrow \dfrac{1}{{r!\left( {18 - r} \right)!}} = \dfrac{1}{{\left( {r + 2} \right)!\left( {16 - r} \right)!}} \\
\Rightarrow r!\left( {18 - r} \right)! = \left( {r + 2} \right)!\left( {16 - r} \right)! \\
\]
We know that, $n! = n\left( {n - 1} \right)\left( {n - 2} \right).....3 \times 2 \times 1$. Using this, we’ll get:
\[
\Rightarrow r!\left( {18 - r} \right)\left( {18 - r - 1} \right)\left( {18 - r - 2} \right)! = \left( {r + 2} \right)\left( {r + 1} \right)r!\left( {16 - r} \right)! \\
\Rightarrow \left( {18 - r} \right)\left( {17 - r} \right)\left( {16 - r} \right)! = \left( {r + 2} \right)\left( {r + 1} \right)\left( {16 - r} \right)! \\
\Rightarrow \left( {18 - r} \right)\left( {17 - r} \right) = \left( {r + 2} \right)\left( {r + 1} \right) \\
\Rightarrow 306 - 18r - 17r + {r^2} = {r^2} + r + 2r + 2 \\
\Rightarrow 306 - 35r = 3r + 2 \\
\Rightarrow 38r = 304 \\
\Rightarrow r = 8 \\
\]
So, the value of $r$ is 8.
We have to find out the value of $^r{C_5}$. Putting $r = 8$, we’ll get:
${ \Rightarrow ^r}{C_5}{ = ^8}{C_5}$
Using formula $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, we’ll get:
$
{ \Rightarrow ^8}{C_5} = \dfrac{{8!}}{{5! \times 3!}} \\
{ \Rightarrow ^8}{C_5} = \dfrac{{8 \times 7 \times 6 \times 5!}}{{5! \times 6}} \\
{ \Rightarrow ^8}{C_5} = 56 \\
$
Thus, the value of $^r{C_5}$ is 56.
Note: This question can be solved by another method as:
We know that if $^n{C_a}{ = ^n}{C_b}$ then either $a = b$ or $a + b = n$ must be true.
So for $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$, we have:
$ \Rightarrow r = r + 2{\text{ or }}r + r + 2 = 18$
First condition is not true. So we have:
$
\Rightarrow r + r + 2 = 18 \\
\Rightarrow 2r + 2 = 18 \\
\Rightarrow 2r = 16 \\
\Rightarrow r = 8 \\
$
We have calculated the value of $r$. While putting it in $^r{C_5}$ we will get the same result.
Complete step-by-step answer:
According to the question, it is given that $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$.
We know that, $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. Using this formula we’ll get:
\[
{ \Rightarrow ^{18}}{C_r}{ = ^{18}}{C_{r + 2}} \\
\Rightarrow \dfrac{{18!}}{{r!\left( {18 - r} \right)!}} = \dfrac{{18!}}{{\left( {r + 2} \right)!\left( {18 - r - 2} \right)!}} \\
\Rightarrow \dfrac{1}{{r!\left( {18 - r} \right)!}} = \dfrac{1}{{\left( {r + 2} \right)!\left( {16 - r} \right)!}} \\
\Rightarrow r!\left( {18 - r} \right)! = \left( {r + 2} \right)!\left( {16 - r} \right)! \\
\]
We know that, $n! = n\left( {n - 1} \right)\left( {n - 2} \right).....3 \times 2 \times 1$. Using this, we’ll get:
\[
\Rightarrow r!\left( {18 - r} \right)\left( {18 - r - 1} \right)\left( {18 - r - 2} \right)! = \left( {r + 2} \right)\left( {r + 1} \right)r!\left( {16 - r} \right)! \\
\Rightarrow \left( {18 - r} \right)\left( {17 - r} \right)\left( {16 - r} \right)! = \left( {r + 2} \right)\left( {r + 1} \right)\left( {16 - r} \right)! \\
\Rightarrow \left( {18 - r} \right)\left( {17 - r} \right) = \left( {r + 2} \right)\left( {r + 1} \right) \\
\Rightarrow 306 - 18r - 17r + {r^2} = {r^2} + r + 2r + 2 \\
\Rightarrow 306 - 35r = 3r + 2 \\
\Rightarrow 38r = 304 \\
\Rightarrow r = 8 \\
\]
So, the value of $r$ is 8.
We have to find out the value of $^r{C_5}$. Putting $r = 8$, we’ll get:
${ \Rightarrow ^r}{C_5}{ = ^8}{C_5}$
Using formula $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, we’ll get:
$
{ \Rightarrow ^8}{C_5} = \dfrac{{8!}}{{5! \times 3!}} \\
{ \Rightarrow ^8}{C_5} = \dfrac{{8 \times 7 \times 6 \times 5!}}{{5! \times 6}} \\
{ \Rightarrow ^8}{C_5} = 56 \\
$
Thus, the value of $^r{C_5}$ is 56.
Note: This question can be solved by another method as:
We know that if $^n{C_a}{ = ^n}{C_b}$ then either $a = b$ or $a + b = n$ must be true.
So for $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$, we have:
$ \Rightarrow r = r + 2{\text{ or }}r + r + 2 = 18$
First condition is not true. So we have:
$
\Rightarrow r + r + 2 = 18 \\
\Rightarrow 2r + 2 = 18 \\
\Rightarrow 2r = 16 \\
\Rightarrow r = 8 \\
$
We have calculated the value of $r$. While putting it in $^r{C_5}$ we will get the same result.
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

When was the first election held in India a 194748 class 12 sst CBSE

