
Find the value of $^r{C_5}$ if $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$.
Answer
532.8k+ views
Hint: The formula for $^n{C_r}$ is $\dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. Use this formula to find out the value of $r$. And then put the value of $r$ in $^r{C_5}$.
Complete step-by-step answer:
According to the question, it is given that $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$.
We know that, $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. Using this formula we’ll get:
\[
{ \Rightarrow ^{18}}{C_r}{ = ^{18}}{C_{r + 2}} \\
\Rightarrow \dfrac{{18!}}{{r!\left( {18 - r} \right)!}} = \dfrac{{18!}}{{\left( {r + 2} \right)!\left( {18 - r - 2} \right)!}} \\
\Rightarrow \dfrac{1}{{r!\left( {18 - r} \right)!}} = \dfrac{1}{{\left( {r + 2} \right)!\left( {16 - r} \right)!}} \\
\Rightarrow r!\left( {18 - r} \right)! = \left( {r + 2} \right)!\left( {16 - r} \right)! \\
\]
We know that, $n! = n\left( {n - 1} \right)\left( {n - 2} \right).....3 \times 2 \times 1$. Using this, we’ll get:
\[
\Rightarrow r!\left( {18 - r} \right)\left( {18 - r - 1} \right)\left( {18 - r - 2} \right)! = \left( {r + 2} \right)\left( {r + 1} \right)r!\left( {16 - r} \right)! \\
\Rightarrow \left( {18 - r} \right)\left( {17 - r} \right)\left( {16 - r} \right)! = \left( {r + 2} \right)\left( {r + 1} \right)\left( {16 - r} \right)! \\
\Rightarrow \left( {18 - r} \right)\left( {17 - r} \right) = \left( {r + 2} \right)\left( {r + 1} \right) \\
\Rightarrow 306 - 18r - 17r + {r^2} = {r^2} + r + 2r + 2 \\
\Rightarrow 306 - 35r = 3r + 2 \\
\Rightarrow 38r = 304 \\
\Rightarrow r = 8 \\
\]
So, the value of $r$ is 8.
We have to find out the value of $^r{C_5}$. Putting $r = 8$, we’ll get:
${ \Rightarrow ^r}{C_5}{ = ^8}{C_5}$
Using formula $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, we’ll get:
$
{ \Rightarrow ^8}{C_5} = \dfrac{{8!}}{{5! \times 3!}} \\
{ \Rightarrow ^8}{C_5} = \dfrac{{8 \times 7 \times 6 \times 5!}}{{5! \times 6}} \\
{ \Rightarrow ^8}{C_5} = 56 \\
$
Thus, the value of $^r{C_5}$ is 56.
Note: This question can be solved by another method as:
We know that if $^n{C_a}{ = ^n}{C_b}$ then either $a = b$ or $a + b = n$ must be true.
So for $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$, we have:
$ \Rightarrow r = r + 2{\text{ or }}r + r + 2 = 18$
First condition is not true. So we have:
$
\Rightarrow r + r + 2 = 18 \\
\Rightarrow 2r + 2 = 18 \\
\Rightarrow 2r = 16 \\
\Rightarrow r = 8 \\
$
We have calculated the value of $r$. While putting it in $^r{C_5}$ we will get the same result.
Complete step-by-step answer:
According to the question, it is given that $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$.
We know that, $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$. Using this formula we’ll get:
\[
{ \Rightarrow ^{18}}{C_r}{ = ^{18}}{C_{r + 2}} \\
\Rightarrow \dfrac{{18!}}{{r!\left( {18 - r} \right)!}} = \dfrac{{18!}}{{\left( {r + 2} \right)!\left( {18 - r - 2} \right)!}} \\
\Rightarrow \dfrac{1}{{r!\left( {18 - r} \right)!}} = \dfrac{1}{{\left( {r + 2} \right)!\left( {16 - r} \right)!}} \\
\Rightarrow r!\left( {18 - r} \right)! = \left( {r + 2} \right)!\left( {16 - r} \right)! \\
\]
We know that, $n! = n\left( {n - 1} \right)\left( {n - 2} \right).....3 \times 2 \times 1$. Using this, we’ll get:
\[
\Rightarrow r!\left( {18 - r} \right)\left( {18 - r - 1} \right)\left( {18 - r - 2} \right)! = \left( {r + 2} \right)\left( {r + 1} \right)r!\left( {16 - r} \right)! \\
\Rightarrow \left( {18 - r} \right)\left( {17 - r} \right)\left( {16 - r} \right)! = \left( {r + 2} \right)\left( {r + 1} \right)\left( {16 - r} \right)! \\
\Rightarrow \left( {18 - r} \right)\left( {17 - r} \right) = \left( {r + 2} \right)\left( {r + 1} \right) \\
\Rightarrow 306 - 18r - 17r + {r^2} = {r^2} + r + 2r + 2 \\
\Rightarrow 306 - 35r = 3r + 2 \\
\Rightarrow 38r = 304 \\
\Rightarrow r = 8 \\
\]
So, the value of $r$ is 8.
We have to find out the value of $^r{C_5}$. Putting $r = 8$, we’ll get:
${ \Rightarrow ^r}{C_5}{ = ^8}{C_5}$
Using formula $^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$, we’ll get:
$
{ \Rightarrow ^8}{C_5} = \dfrac{{8!}}{{5! \times 3!}} \\
{ \Rightarrow ^8}{C_5} = \dfrac{{8 \times 7 \times 6 \times 5!}}{{5! \times 6}} \\
{ \Rightarrow ^8}{C_5} = 56 \\
$
Thus, the value of $^r{C_5}$ is 56.
Note: This question can be solved by another method as:
We know that if $^n{C_a}{ = ^n}{C_b}$ then either $a = b$ or $a + b = n$ must be true.
So for $^{18}{C_r}{ = ^{18}}{C_{r + 2}}$, we have:
$ \Rightarrow r = r + 2{\text{ or }}r + r + 2 = 18$
First condition is not true. So we have:
$
\Rightarrow r + r + 2 = 18 \\
\Rightarrow 2r + 2 = 18 \\
\Rightarrow 2r = 16 \\
\Rightarrow r = 8 \\
$
We have calculated the value of $r$. While putting it in $^r{C_5}$ we will get the same result.
Recently Updated Pages
Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Biology: Engaging Questions & Answers for Success

Master Class 12 Physics: Engaging Questions & Answers for Success

Basicity of sulphurous acid and sulphuric acid are

Master Class 9 General Knowledge: Engaging Questions & Answers for Success

Trending doubts
Which one of the following is a true fish A Jellyfish class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

a Tabulate the differences in the characteristics of class 12 chemistry CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Why is the cell called the structural and functional class 12 biology CBSE

What are the major means of transport Explain each class 12 social science CBSE
