Find the value of $\int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} $.
Answer
366.9k+ views
Hint: Convert $\left( {\sec x + \tan x} \right)$ in terms of $\tan x$ and then integrate.
Let
\[
I = \int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} \\
\\
I = \int
{\tan ^{ - 1}}\left( {\dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}} \right)dx \\
\\
\\
I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right)dx} \\
\]
Converting into their half-angles then we have
$
I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} + 2\sin
\dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}} \right)} dx \\
\\
I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}{{\left(
{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}}
\right)} \\
$
Cancelling common terms in numerator and denominator, we have
$I = \int {{{\tan }^{ - 1}}} \left( {\dfrac{{\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2} - \sin
\dfrac{x}{2}}}} \right)dx$
$I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}{{1 -
\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}} \right)} dx$
$I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)} dx$
Since \[\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}} = \tan \left( {\dfrac{\pi }{4} +
\dfrac{x}{2}} \right)\] we have
\[
I = \int {{{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)dx} \\
\\
I = \int {\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)dx} \\
\\
I = \dfrac{\pi }{4}x + \dfrac{1}{4}{x^2} + c \\
\]
Thus, $\int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} = \dfrac{\pi }{4}x + \dfrac{1}{4}{x^2} + c$.
Note: Do not forget to add integration constant after doing integration.
Let
\[
I = \int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} \\
\\
I = \int
{\tan ^{ - 1}}\left( {\dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}} \right)dx \\
\\
\\
I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right)dx} \\
\]
Converting into their half-angles then we have
$
I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} + 2\sin
\dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}} \right)} dx \\
\\
I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}{{\left(
{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}}
\right)} \\
$
Cancelling common terms in numerator and denominator, we have
$I = \int {{{\tan }^{ - 1}}} \left( {\dfrac{{\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2} - \sin
\dfrac{x}{2}}}} \right)dx$
$I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}{{1 -
\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}} \right)} dx$
$I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)} dx$
Since \[\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}} = \tan \left( {\dfrac{\pi }{4} +
\dfrac{x}{2}} \right)\] we have
\[
I = \int {{{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)dx} \\
\\
I = \int {\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)dx} \\
\\
I = \dfrac{\pi }{4}x + \dfrac{1}{4}{x^2} + c \\
\]
Thus, $\int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} = \dfrac{\pi }{4}x + \dfrac{1}{4}{x^2} + c$.
Note: Do not forget to add integration constant after doing integration.
Last updated date: 27th Sep 2023
•
Total views: 366.9k
•
Views today: 7.66k
Recently Updated Pages
What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts
How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

How many millions make a billion class 6 maths CBSE

Which are the Top 10 Largest Countries of the World?

Number of Prime between 1 to 100 is class 6 maths CBSE

One cusec is equal to how many liters class 8 maths CBSE

How many crores make 10 million class 7 maths CBSE
