# Find the value of $\int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} $.

Answer

Verified

366.9k+ views

Hint: Convert $\left( {\sec x + \tan x} \right)$ in terms of $\tan x$ and then integrate.

Let

\[

I = \int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} \\

\\

I = \int

{\tan ^{ - 1}}\left( {\dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}} \right)dx \\

\\

\\

I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right)dx} \\

\]

Converting into their half-angles then we have

$

I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} + 2\sin

\dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}} \right)} dx \\

\\

I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}{{\left(

{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}}

\right)} \\

$

Cancelling common terms in numerator and denominator, we have

$I = \int {{{\tan }^{ - 1}}} \left( {\dfrac{{\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2} - \sin

\dfrac{x}{2}}}} \right)dx$

$I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}{{1 -

\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}} \right)} dx$

$I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)} dx$

Since \[\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}} = \tan \left( {\dfrac{\pi }{4} +

\dfrac{x}{2}} \right)\] we have

\[

I = \int {{{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)dx} \\

\\

I = \int {\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)dx} \\

\\

I = \dfrac{\pi }{4}x + \dfrac{1}{4}{x^2} + c \\

\]

Thus, $\int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} = \dfrac{\pi }{4}x + \dfrac{1}{4}{x^2} + c$.

Note: Do not forget to add integration constant after doing integration.

Let

\[

I = \int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} \\

\\

I = \int

{\tan ^{ - 1}}\left( {\dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}} \right)dx \\

\\

\\

I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right)dx} \\

\]

Converting into their half-angles then we have

$

I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} + 2\sin

\dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}} \right)} dx \\

\\

I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}{{\left(

{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}}

\right)} \\

$

Cancelling common terms in numerator and denominator, we have

$I = \int {{{\tan }^{ - 1}}} \left( {\dfrac{{\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2} - \sin

\dfrac{x}{2}}}} \right)dx$

$I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}{{1 -

\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}} \right)} dx$

$I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)} dx$

Since \[\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}} = \tan \left( {\dfrac{\pi }{4} +

\dfrac{x}{2}} \right)\] we have

\[

I = \int {{{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)dx} \\

\\

I = \int {\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)dx} \\

\\

I = \dfrac{\pi }{4}x + \dfrac{1}{4}{x^2} + c \\

\]

Thus, $\int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} = \dfrac{\pi }{4}x + \dfrac{1}{4}{x^2} + c$.

Note: Do not forget to add integration constant after doing integration.

Last updated date: 27th Sep 2023

•

Total views: 366.9k

•

Views today: 7.66k

Recently Updated Pages

What is the Full Form of DNA and RNA

What are the Difference Between Acute and Chronic Disease

Difference Between Communicable and Non-Communicable

What is Nutrition Explain Diff Type of Nutrition ?

What is the Function of Digestive Enzymes

What is the Full Form of 1.DPT 2.DDT 3.BCG

Trending doubts

How do you solve x2 11x + 28 0 using the quadratic class 10 maths CBSE

Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE

Briefly mention the contribution of TH Morgan in g class 12 biology CBSE

The equation xxx + 2 is satisfied when x is equal to class 10 maths CBSE

How many millions make a billion class 6 maths CBSE

Which are the Top 10 Largest Countries of the World?

Number of Prime between 1 to 100 is class 6 maths CBSE

One cusec is equal to how many liters class 8 maths CBSE

How many crores make 10 million class 7 maths CBSE