
Find the value of $\int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} $.
Answer
233.1k+ views
Hint: Convert $\left( {\sec x + \tan x} \right)$ in terms of $\tan x$ and then integrate.
Let
\[
I = \int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} \\
\\
I = \int
{\tan ^{ - 1}}\left( {\dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}} \right)dx \\
\\
\\
I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right)dx} \\
\]
Converting into their half-angles then we have
$
I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} + 2\sin
\dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}} \right)} dx \\
\\
I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}{{\left(
{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}}
\right)} \\
$
Cancelling common terms in numerator and denominator, we have
$I = \int {{{\tan }^{ - 1}}} \left( {\dfrac{{\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2} - \sin
\dfrac{x}{2}}}} \right)dx$
$I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}{{1 -
\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}} \right)} dx$
$I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)} dx$
Since \[\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}} = \tan \left( {\dfrac{\pi }{4} +
\dfrac{x}{2}} \right)\] we have
\[
I = \int {{{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)dx} \\
\\
I = \int {\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)dx} \\
\\
I = \dfrac{\pi }{4}x + \dfrac{1}{4}{x^2} + c \\
\]
Thus, $\int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} = \dfrac{\pi }{4}x + \dfrac{1}{4}{x^2} + c$.
Note: Do not forget to add integration constant after doing integration.
Let
\[
I = \int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} \\
\\
I = \int
{\tan ^{ - 1}}\left( {\dfrac{1}{{\cos x}} + \dfrac{{\sin x}}{{\cos x}}} \right)dx \\
\\
\\
I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \sin x}}{{\cos x}}} \right)dx} \\
\]
Converting into their half-angles then we have
$
I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{{{\sin }^2}\dfrac{x}{2} + {{\cos }^2}\dfrac{x}{2} + 2\sin
\dfrac{x}{2}\cos \dfrac{x}{2}}}{{{{\cos }^2}\dfrac{x}{2} - {{\sin }^2}\dfrac{x}{2}}}} \right)} dx \\
\\
I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{{{\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}^2}}}{{\left(
{\cos \dfrac{x}{2} - \sin \dfrac{x}{2}} \right)\left( {\cos \dfrac{x}{2} + \sin \dfrac{x}{2}} \right)}}}
\right)} \\
$
Cancelling common terms in numerator and denominator, we have
$I = \int {{{\tan }^{ - 1}}} \left( {\dfrac{{\cos \dfrac{x}{2} + \sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2} - \sin
\dfrac{x}{2}}}} \right)dx$
$I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}{{1 -
\dfrac{{\sin \dfrac{x}{2}}}{{\cos \dfrac{x}{2}}}}}} \right)} dx$
$I = \int {{{\tan }^{ - 1}}\left( {\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}}} \right)} dx$
Since \[\dfrac{{1 + \tan \dfrac{x}{2}}}{{1 - \tan \dfrac{x}{2}}} = \tan \left( {\dfrac{\pi }{4} +
\dfrac{x}{2}} \right)\] we have
\[
I = \int {{{\tan }^{ - 1}}\left( {\tan \left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)} \right)dx} \\
\\
I = \int {\left( {\dfrac{\pi }{4} + \dfrac{x}{2}} \right)dx} \\
\\
I = \dfrac{\pi }{4}x + \dfrac{1}{4}{x^2} + c \\
\]
Thus, $\int {{{\tan }^{ - 1}}\left( {\sec x + \tan x} \right)dx} = \dfrac{\pi }{4}x + \dfrac{1}{4}{x^2} + c$.
Note: Do not forget to add integration constant after doing integration.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Understanding Electromagnetic Waves and Their Importance

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

Understanding How a Current Loop Acts as a Magnetic Dipole

