
Find the locus of the intersection of tangents to the parabola \[{{y}^{2}}=4ax\], the angle between them being always a given angle \[\alpha \].
Answer
232.8k+ views
Hint: If \[\alpha \] is the angle between two lines having slopes \[{{m}_{1}}\] and \[{{m}_{2}}\], then
\[\tan \alpha =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|\]
The given equation of the parabola is \[{{y}^{2}}=4ax\].
We will consider two points \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] on the parabola , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.

We need to find the equation of tangents at these points.
Now , we know the general equation of tangent at \[\left( a{{t}^{2}},2at \right)\] is given by \[ty=x+a{{t}^{2}}\], where \[t\] is a parameter .
So , the equation of tangent at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] is given by substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent .
On substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent , we get
\[{{t}_{1}}y=x+at_{1}^{2}.....\left( i \right)\]
Similarly , the equation of tangent at \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given as
\[{{t}_{2}}y=x+at_{2}^{2}.....\left( ii \right)\]
Now, we need to find their point of intersection . To find the point of intersection , we will substitute the value of \[x\] from equation \[\left( i \right)\] in equation \[\left( ii \right)\].
From \[\left( i \right)\], we have
\[{{t}_{1}}y=x+at_{1}^{2}\]
\[\Rightarrow x={{t}_{1}}\left( y-a{{t}_{1}} \right)....\left( iii \right)\]
On substituting the value of \[x\] in equation \[\left( ii \right)\], we get
\[{{t}_{2}}y={{t}_{1}}\left( y-a{{t}_{1}} \right)+at_{2}^{2}\]
\[\Rightarrow \left( {{t}_{2}}-{{t}_{1}} \right)y=-at_{1}^{2}+at_{2}^{2}\]
\[\Rightarrow \left( {{t}_{2}}-{{t}_{1}} \right)y=\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)a\]
\[\Rightarrow y=a\left( {{t}_{1}}+{{t}_{2}} \right).....\left( iv \right)\]
Now , we will substitute \[y=a\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( iii \right)\].
On substituting \[y=a\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( iii \right)\], we get
\[x={{t}_{1}}\left( a{{t}_{1}}+a{{t}_{2}}-a{{t}_{1}} \right)\]
\[\Rightarrow x=a{{t}_{1}}{{t}_{2}}....\left( v \right)\]
Now , we need to find the locus of the point of intersection.
So , let the point of intersection be\[M\left( h,k \right)\].
Now , from equation \[\left( i \right)\], we can see that the slope of tangent is \[{{m}_{1}}=\dfrac{1}{{{t}_{1}}}\].
From equation \[\left( ii \right)\], we can see that the slope of tangent is \[{{m}_{2}}=\dfrac{1}{{{t}_{2}}}\].
Now , we know if \[\theta \] is the angle between two lines with slope \[{{m}_{1}}\] and \[{{m}_{2}}\] then ,
\[\tan \theta =\dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}}\]
Now , in the question it is given that the tangents include angle \[\alpha \].
So , \[\tan \alpha =\dfrac{\dfrac{1}{{{t}_{1}}}-\dfrac{1}{{{t}_{2}}}}{1+\left( \dfrac{1}{{{t}_{1}}}.\dfrac{1}{{{t}_{2}}} \right)}\]
\[\tan \alpha =\dfrac{{{t}_{2}}-{{t}_{1}}}{{{t}_{2}}{{t}_{1}}+1}\]
Now , we will square both sides .
On squaring both sides , we get
\[\left( {{\tan }^{2}}\alpha \right){{\left( {{t}_{2}}{{t}_{1}}+1 \right)}^{2}}={{\left( {{t}_{2}}-{{t}_{1}} \right)}^{2}}\]
\[\Rightarrow \left( {{\tan }^{2}}\alpha \right){{\left( {{t}_{2}}{{t}_{1}}+1 \right)}^{2}}={{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-4{{t}_{1}}{{t}_{2}}....\left( vi \right)\]
Now , we know \[M\left( h,k \right)\] is the point of intersection.
So , from equation \[\left( iv \right)\] and equation\[\left( v \right)\] , we get
\[h=a{{t}_{1}}{{t}_{2}}\Rightarrow {{t}_{1}}{{t}_{2}}=\dfrac{h}{a}\]
\[k=a\left( {{t}_{1}}+{{t}_{2}} \right)\Rightarrow {{t}_{1}}+{{t}_{2}}=\dfrac{k}{a}\]
Now , we will substitute the values of \[{{t}_{1}}{{t}_{2}}\] and \[\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( vi \right)\].
On substituting the values of \[{{t}_{1}}{{t}_{2}}\] and \[\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( vi \right)\], we get
\[\left( {{\tan }^{2}}\alpha \right){{\left( \dfrac{h}{a}+1 \right)}^{2}}={{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{4h}{a}\]
\[\Rightarrow \left( {{\tan }^{2}}\alpha \right){{\left( h+a \right)}^{2}}={{k}^{2}}-4ah........\]equation\[(vii)\]
Now, to find the locus of \[M\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[(h,k)\] in equation \[(vii)\].
So , the locus of \[M\left( h,k \right)\] is given as \[\left( {{\tan }^{2}}\alpha \right){{\left( x+a \right)}^{2}}={{y}^{2}}-4ax\]
Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
\[\tan \alpha =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|\]
The given equation of the parabola is \[{{y}^{2}}=4ax\].
We will consider two points \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] and \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] on the parabola , where \[{{t}_{1}}\] and \[{{t}_{2}}\] are parameters.

We need to find the equation of tangents at these points.
Now , we know the general equation of tangent at \[\left( a{{t}^{2}},2at \right)\] is given by \[ty=x+a{{t}^{2}}\], where \[t\] is a parameter .
So , the equation of tangent at \[A\left( at_{1}^{2},2a{{t}_{1}} \right)\] is given by substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent .
On substituting \[{{t}_{1}}\] in place of \[t\] in the general equation of tangent , we get
\[{{t}_{1}}y=x+at_{1}^{2}.....\left( i \right)\]
Similarly , the equation of tangent at \[B\left( at_{2}^{2},2a{{t}_{2}} \right)\] is given as
\[{{t}_{2}}y=x+at_{2}^{2}.....\left( ii \right)\]
Now, we need to find their point of intersection . To find the point of intersection , we will substitute the value of \[x\] from equation \[\left( i \right)\] in equation \[\left( ii \right)\].
From \[\left( i \right)\], we have
\[{{t}_{1}}y=x+at_{1}^{2}\]
\[\Rightarrow x={{t}_{1}}\left( y-a{{t}_{1}} \right)....\left( iii \right)\]
On substituting the value of \[x\] in equation \[\left( ii \right)\], we get
\[{{t}_{2}}y={{t}_{1}}\left( y-a{{t}_{1}} \right)+at_{2}^{2}\]
\[\Rightarrow \left( {{t}_{2}}-{{t}_{1}} \right)y=-at_{1}^{2}+at_{2}^{2}\]
\[\Rightarrow \left( {{t}_{2}}-{{t}_{1}} \right)y=\left( {{t}_{2}}-{{t}_{1}} \right)\left( {{t}_{2}}+{{t}_{1}} \right)a\]
\[\Rightarrow y=a\left( {{t}_{1}}+{{t}_{2}} \right).....\left( iv \right)\]
Now , we will substitute \[y=a\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( iii \right)\].
On substituting \[y=a\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( iii \right)\], we get
\[x={{t}_{1}}\left( a{{t}_{1}}+a{{t}_{2}}-a{{t}_{1}} \right)\]
\[\Rightarrow x=a{{t}_{1}}{{t}_{2}}....\left( v \right)\]
Now , we need to find the locus of the point of intersection.
So , let the point of intersection be\[M\left( h,k \right)\].
Now , from equation \[\left( i \right)\], we can see that the slope of tangent is \[{{m}_{1}}=\dfrac{1}{{{t}_{1}}}\].
From equation \[\left( ii \right)\], we can see that the slope of tangent is \[{{m}_{2}}=\dfrac{1}{{{t}_{2}}}\].
Now , we know if \[\theta \] is the angle between two lines with slope \[{{m}_{1}}\] and \[{{m}_{2}}\] then ,
\[\tan \theta =\dfrac{{{m}_{2}}-{{m}_{1}}}{1+{{m}_{1}}{{m}_{2}}}\]
Now , in the question it is given that the tangents include angle \[\alpha \].
So , \[\tan \alpha =\dfrac{\dfrac{1}{{{t}_{1}}}-\dfrac{1}{{{t}_{2}}}}{1+\left( \dfrac{1}{{{t}_{1}}}.\dfrac{1}{{{t}_{2}}} \right)}\]
\[\tan \alpha =\dfrac{{{t}_{2}}-{{t}_{1}}}{{{t}_{2}}{{t}_{1}}+1}\]
Now , we will square both sides .
On squaring both sides , we get
\[\left( {{\tan }^{2}}\alpha \right){{\left( {{t}_{2}}{{t}_{1}}+1 \right)}^{2}}={{\left( {{t}_{2}}-{{t}_{1}} \right)}^{2}}\]
\[\Rightarrow \left( {{\tan }^{2}}\alpha \right){{\left( {{t}_{2}}{{t}_{1}}+1 \right)}^{2}}={{\left( {{t}_{1}}+{{t}_{2}} \right)}^{2}}-4{{t}_{1}}{{t}_{2}}....\left( vi \right)\]
Now , we know \[M\left( h,k \right)\] is the point of intersection.
So , from equation \[\left( iv \right)\] and equation\[\left( v \right)\] , we get
\[h=a{{t}_{1}}{{t}_{2}}\Rightarrow {{t}_{1}}{{t}_{2}}=\dfrac{h}{a}\]
\[k=a\left( {{t}_{1}}+{{t}_{2}} \right)\Rightarrow {{t}_{1}}+{{t}_{2}}=\dfrac{k}{a}\]
Now , we will substitute the values of \[{{t}_{1}}{{t}_{2}}\] and \[\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( vi \right)\].
On substituting the values of \[{{t}_{1}}{{t}_{2}}\] and \[\left( {{t}_{1}}+{{t}_{2}} \right)\] in equation \[\left( vi \right)\], we get
\[\left( {{\tan }^{2}}\alpha \right){{\left( \dfrac{h}{a}+1 \right)}^{2}}={{\left( \dfrac{k}{a} \right)}^{2}}-\dfrac{4h}{a}\]
\[\Rightarrow \left( {{\tan }^{2}}\alpha \right){{\left( h+a \right)}^{2}}={{k}^{2}}-4ah........\]equation\[(vii)\]
Now, to find the locus of \[M\left( h,k \right)\], we will substitute \[(x,y)\] in place of \[(h,k)\] in equation \[(vii)\].
So , the locus of \[M\left( h,k \right)\] is given as \[\left( {{\tan }^{2}}\alpha \right){{\left( x+a \right)}^{2}}={{y}^{2}}-4ax\]
Note: : While simplifying the equations , please make sure that sign mistakes do not occur. These mistakes are very common and can cause confusions while solving. Ultimately the answer becomes wrong. So, sign conventions should be carefully taken .
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions For Class 11 Maths Chapter 12 Limits and Derivatives (2025-26)

NCERT Solutions For Class 11 Maths Chapter 10 Conic Sections (2025-26)

Understanding the Electric Field of a Uniformly Charged Ring

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

Derivation of Equation of Trajectory Explained for Students

