Answer
Verified
492.3k+ views
Hint: In this type of question where we have to find the inverse by elementary transformation method the important thing is to convert the given matrix into an identity matrix. We can use the elementary row or column transformation to convert the given matrix into an identity matrix.
Complete step-by-step solution -
It is given that we have to find the inverse of the given matrix by elementary transformation method. The given matrix is:
$ {\text{A = }}\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right)\ $ .
We know that for a matrix A, we can write:
A=AI, where
I, is the identity matrix.
Now, we will convert the matrix A on LHS to the identity matrix using elementary row or column transformation.
Putting the value of matrix A and identity matrix in above equation, we get:
$ \
\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}} \\
{\text{Applying }}{{\text{R}}_1} \to {{\text{R}}_1} - 2{{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ + }}{{\text{C}}_1},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&1 \\
3&1&4
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&1 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
\
\
\\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ - }}{{\text{C}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
3&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&3 \\
0&1&{ - 1} \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_1} \to {{\text{C}}_1}{\text{ - }}{{\text{C}}_3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 1}&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 2}&{ - 1}&2
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to \dfrac{{{{\text{R}}_3}}}{3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right){\text{A}}{\text{.}} \\
\\
\ $ (1)
Now. We know that:
$
{\text{A = AI}} \\
\Rightarrow {\text{I = }}{{\text{A}}^{ - 1}}{\text{A}} \\
$ (2)
We have converted the matrix A into the identity matrix which is given by equation 1.
Therefore, on comparing equation 1 and 2, we get:
\[{\text{Inverse of given matrix A = }}{{\text{A}}^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right).\]
Note: Before solving such a type of problem, you should be familiar with the basics property of the identity matrix i.e. ${\text{A = AI}}$ . On rearranging this relation, we get ${\text{I = }}{{\text{A}}^{ - 1}}{\text{A}}$ which clearly says that we have to convert the matrix A on LHS to identity matrix and the first matrix on RHS will give the inverse of the given matrix A. Also you should know how to use row and column transformation.
Complete step-by-step solution -
It is given that we have to find the inverse of the given matrix by elementary transformation method. The given matrix is:
$ {\text{A = }}\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right)\ $ .
We know that for a matrix A, we can write:
A=AI, where
I, is the identity matrix.
Now, we will convert the matrix A on LHS to the identity matrix using elementary row or column transformation.
Putting the value of matrix A and identity matrix in above equation, we get:
$ \
\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}} \\
{\text{Applying }}{{\text{R}}_1} \to {{\text{R}}_1} - 2{{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ + }}{{\text{C}}_1},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&1 \\
3&1&4
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&1 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
\
\
\\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ - }}{{\text{C}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
3&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&3 \\
0&1&{ - 1} \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_1} \to {{\text{C}}_1}{\text{ - }}{{\text{C}}_3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 1}&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 2}&{ - 1}&2
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to \dfrac{{{{\text{R}}_3}}}{3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right){\text{A}}{\text{.}} \\
\\
\ $ (1)
Now. We know that:
$
{\text{A = AI}} \\
\Rightarrow {\text{I = }}{{\text{A}}^{ - 1}}{\text{A}} \\
$ (2)
We have converted the matrix A into the identity matrix which is given by equation 1.
Therefore, on comparing equation 1 and 2, we get:
\[{\text{Inverse of given matrix A = }}{{\text{A}}^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right).\]
Note: Before solving such a type of problem, you should be familiar with the basics property of the identity matrix i.e. ${\text{A = AI}}$ . On rearranging this relation, we get ${\text{I = }}{{\text{A}}^{ - 1}}{\text{A}}$ which clearly says that we have to convert the matrix A on LHS to identity matrix and the first matrix on RHS will give the inverse of the given matrix A. Also you should know how to use row and column transformation.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE