Find the inverse of the matrix \[{\text{A = }}\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right)\] by elementary transformation method?
Last updated date: 16th Mar 2023
•
Total views: 305.1k
•
Views today: 4.85k
Answer
305.1k+ views
Hint: In this type of question where we have to find the inverse by elementary transformation method the important thing is to convert the given matrix into an identity matrix. We can use the elementary row or column transformation to convert the given matrix into an identity matrix.
Complete step-by-step solution -
It is given that we have to find the inverse of the given matrix by elementary transformation method. The given matrix is:
$ {\text{A = }}\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right)\ $ .
We know that for a matrix A, we can write:
A=AI, where
I, is the identity matrix.
Now, we will convert the matrix A on LHS to the identity matrix using elementary row or column transformation.
Putting the value of matrix A and identity matrix in above equation, we get:
$ \
\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}} \\
{\text{Applying }}{{\text{R}}_1} \to {{\text{R}}_1} - 2{{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ + }}{{\text{C}}_1},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&1 \\
3&1&4
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&1 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
\
\
\\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ - }}{{\text{C}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
3&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&3 \\
0&1&{ - 1} \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_1} \to {{\text{C}}_1}{\text{ - }}{{\text{C}}_3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 1}&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 2}&{ - 1}&2
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to \dfrac{{{{\text{R}}_3}}}{3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right){\text{A}}{\text{.}} \\
\\
\ $ (1)
Now. We know that:
$
{\text{A = AI}} \\
\Rightarrow {\text{I = }}{{\text{A}}^{ - 1}}{\text{A}} \\
$ (2)
We have converted the matrix A into the identity matrix which is given by equation 1.
Therefore, on comparing equation 1 and 2, we get:
\[{\text{Inverse of given matrix A = }}{{\text{A}}^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right).\]
Note: Before solving such a type of problem, you should be familiar with the basics property of the identity matrix i.e. ${\text{A = AI}}$ . On rearranging this relation, we get ${\text{I = }}{{\text{A}}^{ - 1}}{\text{A}}$ which clearly says that we have to convert the matrix A on LHS to identity matrix and the first matrix on RHS will give the inverse of the given matrix A. Also you should know how to use row and column transformation.
Complete step-by-step solution -
It is given that we have to find the inverse of the given matrix by elementary transformation method. The given matrix is:
$ {\text{A = }}\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right)\ $ .
We know that for a matrix A, we can write:
A=AI, where
I, is the identity matrix.
Now, we will convert the matrix A on LHS to the identity matrix using elementary row or column transformation.
Putting the value of matrix A and identity matrix in above equation, we get:
$ \
\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}} \\
{\text{Applying }}{{\text{R}}_1} \to {{\text{R}}_1} - 2{{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ + }}{{\text{C}}_1},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&1 \\
3&1&4
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&1 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
\
\
\\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ - }}{{\text{C}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
3&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&3 \\
0&1&{ - 1} \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_1} \to {{\text{C}}_1}{\text{ - }}{{\text{C}}_3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 1}&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 2}&{ - 1}&2
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to \dfrac{{{{\text{R}}_3}}}{3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right){\text{A}}{\text{.}} \\
\\
\ $ (1)
Now. We know that:
$
{\text{A = AI}} \\
\Rightarrow {\text{I = }}{{\text{A}}^{ - 1}}{\text{A}} \\
$ (2)
We have converted the matrix A into the identity matrix which is given by equation 1.
Therefore, on comparing equation 1 and 2, we get:
\[{\text{Inverse of given matrix A = }}{{\text{A}}^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right).\]
Note: Before solving such a type of problem, you should be familiar with the basics property of the identity matrix i.e. ${\text{A = AI}}$ . On rearranging this relation, we get ${\text{I = }}{{\text{A}}^{ - 1}}{\text{A}}$ which clearly says that we have to convert the matrix A on LHS to identity matrix and the first matrix on RHS will give the inverse of the given matrix A. Also you should know how to use row and column transformation.
Recently Updated Pages
If ab and c are unit vectors then left ab2 right+bc2+ca2 class 12 maths JEE_Main

A rod AB of length 4 units moves horizontally when class 11 maths JEE_Main

Evaluate the value of intlimits0pi cos 3xdx A 0 B 1 class 12 maths JEE_Main

Which of the following is correct 1 nleft S cup T right class 10 maths JEE_Main

What is the area of the triangle with vertices Aleft class 11 maths JEE_Main

KCN reacts readily to give a cyanide with A Ethyl alcohol class 12 chemistry JEE_Main

Trending doubts
What was the capital of Kanishka A Mathura B Purushapura class 7 social studies CBSE

Difference Between Plant Cell and Animal Cell

Write an application to the principal requesting five class 10 english CBSE

Ray optics is valid when characteristic dimensions class 12 physics CBSE

Give 10 examples for herbs , shrubs , climbers , creepers

Tropic of Cancer passes through how many states? Name them.

Write the 6 fundamental rights of India and explain in detail

Write a letter to the principal requesting him to grant class 10 english CBSE

Name the Largest and the Smallest Cell in the Human Body ?
