Find the inverse of the matrix \[{\text{A = }}\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right)\] by elementary transformation method?
Answer
381k+ views
Hint: In this type of question where we have to find the inverse by elementary transformation method the important thing is to convert the given matrix into an identity matrix. We can use the elementary row or column transformation to convert the given matrix into an identity matrix.
Complete step-by-step solution -
It is given that we have to find the inverse of the given matrix by elementary transformation method. The given matrix is:
$ {\text{A = }}\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right)\ $ .
We know that for a matrix A, we can write:
A=AI, where
I, is the identity matrix.
Now, we will convert the matrix A on LHS to the identity matrix using elementary row or column transformation.
Putting the value of matrix A and identity matrix in above equation, we get:
$ \
\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}} \\
{\text{Applying }}{{\text{R}}_1} \to {{\text{R}}_1} - 2{{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ + }}{{\text{C}}_1},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&1 \\
3&1&4
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&1 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
\
\
\\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ - }}{{\text{C}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
3&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&3 \\
0&1&{ - 1} \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_1} \to {{\text{C}}_1}{\text{ - }}{{\text{C}}_3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 1}&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 2}&{ - 1}&2
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to \dfrac{{{{\text{R}}_3}}}{3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right){\text{A}}{\text{.}} \\
\\
\ $ (1)
Now. We know that:
$
{\text{A = AI}} \\
\Rightarrow {\text{I = }}{{\text{A}}^{ - 1}}{\text{A}} \\
$ (2)
We have converted the matrix A into the identity matrix which is given by equation 1.
Therefore, on comparing equation 1 and 2, we get:
\[{\text{Inverse of given matrix A = }}{{\text{A}}^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right).\]
Note: Before solving such a type of problem, you should be familiar with the basics property of the identity matrix i.e. ${\text{A = AI}}$ . On rearranging this relation, we get ${\text{I = }}{{\text{A}}^{ - 1}}{\text{A}}$ which clearly says that we have to convert the matrix A on LHS to identity matrix and the first matrix on RHS will give the inverse of the given matrix A. Also you should know how to use row and column transformation.
Complete step-by-step solution -
It is given that we have to find the inverse of the given matrix by elementary transformation method. The given matrix is:
$ {\text{A = }}\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right)\ $ .
We know that for a matrix A, we can write:
A=AI, where
I, is the identity matrix.
Now, we will convert the matrix A on LHS to the identity matrix using elementary row or column transformation.
Putting the value of matrix A and identity matrix in above equation, we get:
$ \
\left( {\begin{array}{*{20}{c}}
1&2&1 \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}} \\
{\text{Applying }}{{\text{R}}_1} \to {{\text{R}}_1} - 2{{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&{ - 1} \\
0&1&1 \\
3&1&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&0 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ + }}{{\text{C}}_1},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&1 \\
3&1&4
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&1 \\
0&1&0 \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
\
\
\\
{\text{Applying }}{{\text{C}}_3} \to {{\text{C}}_3}{\text{ - }}{{\text{C}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
3&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
1&{ - 2}&3 \\
0&1&{ - 1} \\
0&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{C}}_1} \to {{\text{C}}_1}{\text{ - }}{{\text{C}}_3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&1&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 1}&0&1
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to {{\text{R}}_3} - {{\text{R}}_2},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&3
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{ - 2}&{ - 1}&2
\end{array}} \right){\text{A}}{\text{.}} \\
{\text{Applying }}{{\text{R}}_3} \to \dfrac{{{{\text{R}}_3}}}{3},{\text{ we get:}} \\
\left( {\begin{array}{*{20}{c}}
1&0&0 \\
0&1&0 \\
0&0&1
\end{array}} \right) = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right){\text{A}}{\text{.}} \\
\\
\ $ (1)
Now. We know that:
$
{\text{A = AI}} \\
\Rightarrow {\text{I = }}{{\text{A}}^{ - 1}}{\text{A}} \\
$ (2)
We have converted the matrix A into the identity matrix which is given by equation 1.
Therefore, on comparing equation 1 and 2, we get:
\[{\text{Inverse of given matrix A = }}{{\text{A}}^{ - 1}} = \left( {\begin{array}{*{20}{c}}
{ - 2}&{ - 2}&3 \\
1&1&{ - 1} \\
{\dfrac{{ - 2}}{3}}&{\dfrac{{ - 1}}{3}}&{\dfrac{2}{3}}
\end{array}} \right).\]
Note: Before solving such a type of problem, you should be familiar with the basics property of the identity matrix i.e. ${\text{A = AI}}$ . On rearranging this relation, we get ${\text{I = }}{{\text{A}}^{ - 1}}{\text{A}}$ which clearly says that we have to convert the matrix A on LHS to identity matrix and the first matrix on RHS will give the inverse of the given matrix A. Also you should know how to use row and column transformation.
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
Which country launched the first satellite in space class 11 physics CBSE

Difference Between Plant Cell and Animal Cell

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

What is pollution? How many types of pollution? Define it

Give 10 examples for herbs , shrubs , climbers , creepers

Write a letter to the principal requesting him to grant class 10 english CBSE
