Answer
Verified
426.3k+ views
Hint: First we know that complex number, the complex numbers are $1, - 1,i, - i$. The complex number denoted by $z$. If you express your complex number in polar form as $r(\cos \theta + i\sin \theta )$.
We use the ${n^{th}}$ root theorem.
$\sqrt[n]{z} = \sqrt[n]{r}\left[ {\cos (\alpha ) + i\sin (\alpha )} \right]$
This is an extension of DeMoivre’s theorem.
Where, $\alpha = \dfrac{{\theta + 360k}}{n}$ ,$k = 0,1,2,3....,n - 1$
Complete step-by-step solution:
The first thing we should recognize is if we want the $4th$ roots, $n$ will be $4$.
$n = 4$
Next we need to write this complex number in complex form. So we need to find $r$ and $\theta $
Let $a + ib$
Let $z = - 8 + 8i\sqrt 3 $
$a = - 8$ and $b = 8\sqrt 3 $
Now $r$ formula is, $r = \sqrt {{a^2} + {b^2}} $ ,
Now apply the complex number in the $r$ equation, we get
$ \Rightarrow r = \sqrt {{{( - 8)}^2} + {{(8\sqrt 3 )}^2}} $
Square on two terms
$ \Rightarrow r = \sqrt {64 + 192} $
Now add the terms,
$ \Rightarrow r = \sqrt {256} = 16$
Next we need to find $\theta $. But before we do that let’s recognize that if $a$ is negative and $b$ is positive, $\theta $ will be in this second quadrant. And we know that tangent theta is equal to $\dfrac{b}{a}$
$ \Rightarrow \tan \theta = \dfrac{b}{a}$
Now substitute $a$ and $b$ in tangent
\[ \Rightarrow \tan \theta = \dfrac{{\not{8}\sqrt 3 }}{{ - \not{8}}} = \dfrac{{\sqrt 3 }}{{ - 1}}\]
Then the theta value is ${120^ \circ }$
$ \Rightarrow \theta = {120^ \circ }$
Now we find $\alpha $value,
$ \Rightarrow \alpha = \dfrac{{\theta + {{360}^ \circ }k}}{n}$, $k = 0,1,2,3....,n - 1$
\[ \Rightarrow \alpha = \dfrac{{{{120}^ \circ } + {{360}^ \circ }k}}{4}\]
Let’s see if we can simplify this expression, before we $120$ divide by $4$ would be $30$degrees and $360k$ divided by 4 would be $90$degrees.
$\alpha = {30^ \circ } + {90^ \circ }k$
Now we have,
$n = 4$
$r = 16$
$\alpha = {30^ \circ } + {90^ \circ }k$
$k = 0,1,2,3.$
If $k = 0$, then $\alpha = {30^ \circ } + {90^ \circ }(0) = {30^ \circ }$
If $k = 1$, then $\alpha = {30^ \circ } + {90^ \circ }(1) = {120^ \circ }$
If $k = 2$, then $\alpha = {30^ \circ } + {90^ \circ }(2) = {210^ \circ }$
If $k = 3$, then $\alpha = {30^ \circ } + {90^ \circ }(3) = {300^ \circ }$
Now these values are substitute in the equation of $\sqrt[n]{z} = \sqrt[n]{r}\left[ {\cos (\alpha ) + i\sin (\alpha )} \right]$
If $\theta = {30^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {30^ \circ } + i\sin {30^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{\sqrt 3 }}{2} + i\left( {\dfrac{1}{2}} \right)} \right) = \sqrt 3 + i$
If $\theta = {120^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {120^ \circ } + i\sin {120^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{ - 1}}{2} + i\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right) = - 1 + i\sqrt 3 $
If $\theta = {210^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {210^ \circ } + i\sin {210^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{ - \sqrt 3 }}{2} + i\left( {\dfrac{{ - 1}}{2}} \right)} \right) = - \sqrt 3 - i$
If $\theta = {300^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {300^ \circ } + i\sin {300^ \circ })$
$ \Rightarrow 2\left( {\dfrac{1}{2} + i\left( {\dfrac{{ - \sqrt 3 }}{2}} \right)} \right) = 1 - i\sqrt 3$
Note: The applet below shows the complex $4^{th}$ roots of a complex number. DeMoivre’s Theorem shows that there are always fourth roots, spaced evenly around a circle. The segment of $z$ indicates the given number $z$, and the segments of fourth roots ${z_0},{z_1},{z_2}$ and ${z_3}$.
We use the ${n^{th}}$ root theorem.
$\sqrt[n]{z} = \sqrt[n]{r}\left[ {\cos (\alpha ) + i\sin (\alpha )} \right]$
This is an extension of DeMoivre’s theorem.
Where, $\alpha = \dfrac{{\theta + 360k}}{n}$ ,$k = 0,1,2,3....,n - 1$
Complete step-by-step solution:
The first thing we should recognize is if we want the $4th$ roots, $n$ will be $4$.
$n = 4$
Next we need to write this complex number in complex form. So we need to find $r$ and $\theta $
Let $a + ib$
Let $z = - 8 + 8i\sqrt 3 $
$a = - 8$ and $b = 8\sqrt 3 $
Now $r$ formula is, $r = \sqrt {{a^2} + {b^2}} $ ,
Now apply the complex number in the $r$ equation, we get
$ \Rightarrow r = \sqrt {{{( - 8)}^2} + {{(8\sqrt 3 )}^2}} $
Square on two terms
$ \Rightarrow r = \sqrt {64 + 192} $
Now add the terms,
$ \Rightarrow r = \sqrt {256} = 16$
Next we need to find $\theta $. But before we do that let’s recognize that if $a$ is negative and $b$ is positive, $\theta $ will be in this second quadrant. And we know that tangent theta is equal to $\dfrac{b}{a}$
$ \Rightarrow \tan \theta = \dfrac{b}{a}$
Now substitute $a$ and $b$ in tangent
\[ \Rightarrow \tan \theta = \dfrac{{\not{8}\sqrt 3 }}{{ - \not{8}}} = \dfrac{{\sqrt 3 }}{{ - 1}}\]
Then the theta value is ${120^ \circ }$
$ \Rightarrow \theta = {120^ \circ }$
Now we find $\alpha $value,
$ \Rightarrow \alpha = \dfrac{{\theta + {{360}^ \circ }k}}{n}$, $k = 0,1,2,3....,n - 1$
\[ \Rightarrow \alpha = \dfrac{{{{120}^ \circ } + {{360}^ \circ }k}}{4}\]
Let’s see if we can simplify this expression, before we $120$ divide by $4$ would be $30$degrees and $360k$ divided by 4 would be $90$degrees.
$\alpha = {30^ \circ } + {90^ \circ }k$
Now we have,
$n = 4$
$r = 16$
$\alpha = {30^ \circ } + {90^ \circ }k$
$k = 0,1,2,3.$
If $k = 0$, then $\alpha = {30^ \circ } + {90^ \circ }(0) = {30^ \circ }$
If $k = 1$, then $\alpha = {30^ \circ } + {90^ \circ }(1) = {120^ \circ }$
If $k = 2$, then $\alpha = {30^ \circ } + {90^ \circ }(2) = {210^ \circ }$
If $k = 3$, then $\alpha = {30^ \circ } + {90^ \circ }(3) = {300^ \circ }$
Now these values are substitute in the equation of $\sqrt[n]{z} = \sqrt[n]{r}\left[ {\cos (\alpha ) + i\sin (\alpha )} \right]$
If $\theta = {30^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {30^ \circ } + i\sin {30^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{\sqrt 3 }}{2} + i\left( {\dfrac{1}{2}} \right)} \right) = \sqrt 3 + i$
If $\theta = {120^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {120^ \circ } + i\sin {120^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{ - 1}}{2} + i\left( {\dfrac{{\sqrt 3 }}{2}} \right)} \right) = - 1 + i\sqrt 3 $
If $\theta = {210^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {210^ \circ } + i\sin {210^ \circ })$
$ \Rightarrow 2\left( {\dfrac{{ - \sqrt 3 }}{2} + i\left( {\dfrac{{ - 1}}{2}} \right)} \right) = - \sqrt 3 - i$
If $\theta = {300^ \circ }$
$\sqrt[4]{z} = \sqrt[4]{{16}}(\cos {300^ \circ } + i\sin {300^ \circ })$
$ \Rightarrow 2\left( {\dfrac{1}{2} + i\left( {\dfrac{{ - \sqrt 3 }}{2}} \right)} \right) = 1 - i\sqrt 3$
Note: The applet below shows the complex $4^{th}$ roots of a complex number. DeMoivre’s Theorem shows that there are always fourth roots, spaced evenly around a circle. The segment of $z$ indicates the given number $z$, and the segments of fourth roots ${z_0},{z_1},{z_2}$ and ${z_3}$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
10 examples of friction in our daily life
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What is pollution? How many types of pollution? Define it