Answer
Verified
491.4k+ views
Hint: Use property of logarithm that is \[{{\log }_{a}}a=1\]and ${{\log }_{c}}a-{{\log }_{c}}b={{\log }_{c}}\left( \dfrac{a}{b} \right)$to simplify the given relation. Use a graphical approach to find values of ‘x’ for simplicity.
Complete step-by-step answer:
Here, it is given that ${{\log }_{0.5}}\sin x=1-{{\log }_{0.5}}\cos x$, and then we need to determine all the values of x lying in$\left[ -2\pi ,2\pi \right]$.
We have
${{\log }_{0.5}}\sin x=1-{{\log }_{0.5}}\cos x\ldots \ldots (1)$
As we know the property of the logarithm function that \[{{\log }_{a}}a=1\] where $a>0$and $a\ne 1$.
Or vice-versa is also true. It means we can replace ‘1’ from equation (1) by \[{{\log }_{0.5}}0.5\]for the simplification of the problem.
Hence, equation (1) can be written as
${{\log }_{0.5}}\sin x={{\log }_{0.5}}0.5-{{\log }_{0.5}}\cos x$
We can use property of logarithm ${{\log }_{c}}a-{{\log }_{c}}b={{\log }_{c}}\left( \dfrac{a}{b} \right)$, with the above equation and get
${{\log }_{0.5}}\sin x={{\log }_{0.5}}\left( \dfrac{0.5}{\cos x} \right)\ldots \ldots (2)$
As we know that ‘a’ should be equal to ‘b’ if ${{\log }_{c}}a={{\log }_{c}}b$.
Hence, using the above property with equation (2), we get
$\dfrac{\sin x}{1}=\dfrac{0.5}{\cos x}$
On cross-multiplying, we get
$\sin x\cos x=\dfrac{1}{2}$or $2\sin x\cos x=1\ldots \ldots (3)$
As we know the trigonometric identity of $\sin 2x$as $\sin 2x=2\sin x\cos x$or vice-versa.
Hence, equation (3) can be given as
$\sin 2x=1\ldots \ldots (4)$
Now, we have to find ‘x’ in the interval$\left[ -2\pi ,2\pi \right]$.
So we have $-2\pi \le x\le 2\pi $
Multiplying by ‘2’ on each side we get
$-4\pi \le 2x\le 4\pi $
Now, drawing graph of $\sin x$ from $-4\pi $ to \[4\pi \], we get
As we can observe that $y=\sin x$ has values of 1 at $\dfrac{\pi }{2},\dfrac{5\pi }{2},\dfrac{-3\pi }{2},\dfrac{-7\pi }{2}$.
Now, we have the equation $\sin 2x=1$.
Hence,
$2x=\dfrac{-7\pi }{2},\dfrac{-3\pi }{2},\dfrac{\pi }{2}.\dfrac{5\pi }{2}$
Or $x=\dfrac{-7\pi }{4},\dfrac{-3\pi }{4},\dfrac{\pi }{4}.\dfrac{5\pi }{4}$
Note: One can get confusion between $y=\sin x$ and equation $\sin 2x=1$. Graph of $y=\sin x$ is representing the general relation between angles and values which is not related to equation$\sin 2x=1$. One can suppose ‘2x’ as ‘t’ as well for the simplicity, so we will get equation $\sin t=1$. Now, t will lie in $\left[ -4\pi ,4\pi \right]$ as \[t=2x\]; hence find all values of ‘t’ then find ‘x’ by using relation $x=\dfrac{t}{2}$.
Complete step-by-step answer:
Here, it is given that ${{\log }_{0.5}}\sin x=1-{{\log }_{0.5}}\cos x$, and then we need to determine all the values of x lying in$\left[ -2\pi ,2\pi \right]$.
We have
${{\log }_{0.5}}\sin x=1-{{\log }_{0.5}}\cos x\ldots \ldots (1)$
As we know the property of the logarithm function that \[{{\log }_{a}}a=1\] where $a>0$and $a\ne 1$.
Or vice-versa is also true. It means we can replace ‘1’ from equation (1) by \[{{\log }_{0.5}}0.5\]for the simplification of the problem.
Hence, equation (1) can be written as
${{\log }_{0.5}}\sin x={{\log }_{0.5}}0.5-{{\log }_{0.5}}\cos x$
We can use property of logarithm ${{\log }_{c}}a-{{\log }_{c}}b={{\log }_{c}}\left( \dfrac{a}{b} \right)$, with the above equation and get
${{\log }_{0.5}}\sin x={{\log }_{0.5}}\left( \dfrac{0.5}{\cos x} \right)\ldots \ldots (2)$
As we know that ‘a’ should be equal to ‘b’ if ${{\log }_{c}}a={{\log }_{c}}b$.
Hence, using the above property with equation (2), we get
$\dfrac{\sin x}{1}=\dfrac{0.5}{\cos x}$
On cross-multiplying, we get
$\sin x\cos x=\dfrac{1}{2}$or $2\sin x\cos x=1\ldots \ldots (3)$
As we know the trigonometric identity of $\sin 2x$as $\sin 2x=2\sin x\cos x$or vice-versa.
Hence, equation (3) can be given as
$\sin 2x=1\ldots \ldots (4)$
Now, we have to find ‘x’ in the interval$\left[ -2\pi ,2\pi \right]$.
So we have $-2\pi \le x\le 2\pi $
Multiplying by ‘2’ on each side we get
$-4\pi \le 2x\le 4\pi $
Now, drawing graph of $\sin x$ from $-4\pi $ to \[4\pi \], we get
As we can observe that $y=\sin x$ has values of 1 at $\dfrac{\pi }{2},\dfrac{5\pi }{2},\dfrac{-3\pi }{2},\dfrac{-7\pi }{2}$.
Now, we have the equation $\sin 2x=1$.
Hence,
$2x=\dfrac{-7\pi }{2},\dfrac{-3\pi }{2},\dfrac{\pi }{2}.\dfrac{5\pi }{2}$
Or $x=\dfrac{-7\pi }{4},\dfrac{-3\pi }{4},\dfrac{\pi }{4}.\dfrac{5\pi }{4}$
Note: One can get confusion between $y=\sin x$ and equation $\sin 2x=1$. Graph of $y=\sin x$ is representing the general relation between angles and values which is not related to equation$\sin 2x=1$. One can suppose ‘2x’ as ‘t’ as well for the simplicity, so we will get equation $\sin t=1$. Now, t will lie in $\left[ -4\pi ,4\pi \right]$ as \[t=2x\]; hence find all values of ‘t’ then find ‘x’ by using relation $x=\dfrac{t}{2}$.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE