
Find \[{{f}^{-1}}\], if it exists: \[f:A\to B,\] where
(i) \[A=\left\{ 0,-1,-3,2 \right\};B=\left\{ -9,-3,0,6 \right\}\] and \[f\left( x \right)=3x\]
(ii) \[A=\left\{ 1,3,5,7,9 \right\};B=\left\{ 0,1,9,25,49,81 \right\}\] and \[f\left( x \right)={{x}^{2}}\]
Answer
613.5k+ views
Hint: Check if the function is one-one and onto. If yes, then write \[x\] in terms of \[f\left( x \right)\], then replace \[x\] by \[{{f}^{-1}}\left( x \right)\] and \[f\left( x \right)\] by \[x\].
(i) Here we have to find \[{{f}^{-1}}\] for \[f:A\to B\], where \[A=\left\{ 0,-1,-3,2 \right\};B=\left\{ -9,-3,0,6 \right\}\] and \[f\left( x \right)=3x\]
We know that \[f\left( x \right)\] is invertible only when \[f\left( x \right)\] is one-one and onto.
Now, we will check \[f\left( x \right)\] for one-one and onto.
Now, we will put \[\left\{ 0,-1,-3,2 \right\}\] in \[f\left( x \right)\] which is the domain \[\left( A \right)\] of the function.
Therefore, \[f\left( 0 \right)=3\left( 0 \right)=0\]
\[f\left( -1 \right)=3\left( -1 \right)=-3\]
\[f\left( -3 \right)=3\left( -3 \right)=-9\]
\[f\left( 2 \right)=3\left( 2 \right)=6\]
Therefore, \[\left\{ 0,-3,-9,6 \right\}\] is in the range of the function.
As \[A\] have different \[f\] images in \[B\], therefore the function is one – one
Also, range \[=\] co-domain, therefore function is onto.
Therefore, to find \[{{f}^{-1}}\left( x \right)\], we will write \[x\] in terms of \[f\left( x \right)\] and then replace \[x\] by \[{{f}^{-1}}\left( x \right)\] and \[f\left( x \right)\]by \[x\].
So, \[f\left( x \right)=3x\]
\[\dfrac{f\left( x \right)}{3}=x\]
By replacing \[x\] by \[{{f}^{-1}}\left( x \right)\] and \[f\left( x \right)\] by \[x\], we get
\[{{f}^{-1}}\left( x \right)=\dfrac{x}{3}:B\to A\] where \[B=\left\{ -9,-3,0,6 \right\}\] and \[A=\left\{ 0,-1,-3,2 \right\}\]
(ii) Here we have to find \[{{f}^{-1}}\] for \[f:A\to B\] where \[A=\left\{ 1,3,5,7,9 \right\};B=\left\{ 0,1,9,25,49,81 \right\}\] and \[f\left( x \right)={{x}^{2}}\].
First of all, we will check \[f\left( x \right)\] for one-one and onto.
Now, we will put \[\left\{ 1,3,5,7,9 \right\}\] in \[f\left( x \right)\] which is the domain of the function.
Therefore, \[f\left( 1 \right)={{\left( 1 \right)}^{2}}=1\]
\[f\left( 3 \right)={{\left( 3 \right)}^{2}}=9\]
\[f\left( 5 \right)={{\left( 5 \right)}^{2}}=25\]
\[f\left( 7 \right)={{\left( 7 \right)}^{2}}=49\]
\[f\left( 9 \right)={{\left( 9 \right)}^{2}}=81\]
Therefore, \[\left\{ 1,9,25,49,81 \right\}\] is the range of the function.
As\[A\] have different \[f\] images in \[B\], therefore the function is one – one.
Also range \[=\] co-domain. Therefore, the function is onto.
Therefore, to find \[{{f}^{-1}}\left( x \right)\], we will write \[x\] in terms of \[f\left( x \right)\] and then replace \[f\left( x \right)\] by \[x\] and \[x\] by \[{{f}^{-1}}\left( x \right)\].
So, \[f\left( x \right)={{x}^{2}}\]
\[\sqrt{f\left( x \right)}=x\]
By replacing \[x\] by \[{{f}^{-1}}\left( x \right)\] and \[y\] by \[x\], we get
\[{{f}^{-1}}\left( x \right)=\sqrt{x}:B\to A\] where \[B:\left\{ 0,1,9,25,49,81 \right\}\] and \[A:\left\{ 0,1,3,5,7,9 \right\}\]
Note: Students must check if the function is one-one and onto before finding the inverse of the function. One – one function means different elements of the domain have different \[f\] images in the codomain. Onto function means the range of the function should be equal to its codomain.
(i) Here we have to find \[{{f}^{-1}}\] for \[f:A\to B\], where \[A=\left\{ 0,-1,-3,2 \right\};B=\left\{ -9,-3,0,6 \right\}\] and \[f\left( x \right)=3x\]
We know that \[f\left( x \right)\] is invertible only when \[f\left( x \right)\] is one-one and onto.
Now, we will check \[f\left( x \right)\] for one-one and onto.
Now, we will put \[\left\{ 0,-1,-3,2 \right\}\] in \[f\left( x \right)\] which is the domain \[\left( A \right)\] of the function.
Therefore, \[f\left( 0 \right)=3\left( 0 \right)=0\]
\[f\left( -1 \right)=3\left( -1 \right)=-3\]
\[f\left( -3 \right)=3\left( -3 \right)=-9\]
\[f\left( 2 \right)=3\left( 2 \right)=6\]
Therefore, \[\left\{ 0,-3,-9,6 \right\}\] is in the range of the function.
As \[A\] have different \[f\] images in \[B\], therefore the function is one – one
Also, range \[=\] co-domain, therefore function is onto.
Therefore, to find \[{{f}^{-1}}\left( x \right)\], we will write \[x\] in terms of \[f\left( x \right)\] and then replace \[x\] by \[{{f}^{-1}}\left( x \right)\] and \[f\left( x \right)\]by \[x\].
So, \[f\left( x \right)=3x\]
\[\dfrac{f\left( x \right)}{3}=x\]
By replacing \[x\] by \[{{f}^{-1}}\left( x \right)\] and \[f\left( x \right)\] by \[x\], we get
\[{{f}^{-1}}\left( x \right)=\dfrac{x}{3}:B\to A\] where \[B=\left\{ -9,-3,0,6 \right\}\] and \[A=\left\{ 0,-1,-3,2 \right\}\]
(ii) Here we have to find \[{{f}^{-1}}\] for \[f:A\to B\] where \[A=\left\{ 1,3,5,7,9 \right\};B=\left\{ 0,1,9,25,49,81 \right\}\] and \[f\left( x \right)={{x}^{2}}\].
First of all, we will check \[f\left( x \right)\] for one-one and onto.
Now, we will put \[\left\{ 1,3,5,7,9 \right\}\] in \[f\left( x \right)\] which is the domain of the function.
Therefore, \[f\left( 1 \right)={{\left( 1 \right)}^{2}}=1\]
\[f\left( 3 \right)={{\left( 3 \right)}^{2}}=9\]
\[f\left( 5 \right)={{\left( 5 \right)}^{2}}=25\]
\[f\left( 7 \right)={{\left( 7 \right)}^{2}}=49\]
\[f\left( 9 \right)={{\left( 9 \right)}^{2}}=81\]
Therefore, \[\left\{ 1,9,25,49,81 \right\}\] is the range of the function.
As\[A\] have different \[f\] images in \[B\], therefore the function is one – one.
Also range \[=\] co-domain. Therefore, the function is onto.
Therefore, to find \[{{f}^{-1}}\left( x \right)\], we will write \[x\] in terms of \[f\left( x \right)\] and then replace \[f\left( x \right)\] by \[x\] and \[x\] by \[{{f}^{-1}}\left( x \right)\].
So, \[f\left( x \right)={{x}^{2}}\]
\[\sqrt{f\left( x \right)}=x\]
By replacing \[x\] by \[{{f}^{-1}}\left( x \right)\] and \[y\] by \[x\], we get
\[{{f}^{-1}}\left( x \right)=\sqrt{x}:B\to A\] where \[B:\left\{ 0,1,9,25,49,81 \right\}\] and \[A:\left\{ 0,1,3,5,7,9 \right\}\]
Note: Students must check if the function is one-one and onto before finding the inverse of the function. One – one function means different elements of the domain have different \[f\] images in the codomain. Onto function means the range of the function should be equal to its codomain.
Recently Updated Pages
Define gravitational potential energy Derive an expression class 10 physics CBSE

Differentiate between natural and artificial ecosy class 10 biology CBSE

A 5 digit number is formed by using the digits 0 1-class-10-maths-ICSE

Give the correct antonym of Patient a Impatient b Tolerance class 10 english CBSE

Find the sum of the first 20 natural numbers Choose class 10 maths CBSE

What are the advantages of using manure class 10 biology CBSE

Trending doubts
Which are the Top 10 Largest Countries of the World?

What are the major means of transport Explain each class 12 social science CBSE

Differentiate between insitu conservation and exsitu class 12 biology CBSE

Draw a labelled sketch of the human eye class 12 physics CBSE

State the principle of an ac generator and explain class 12 physics CBSE

Give 10 examples of unisexual and bisexual flowers

