Answer
Verified
373.5k+ views
Hint: In this type of question we have to use the concept of derivatives. Here, we have given two functions \[u\] and \[v\], where both are functions of \[\theta \]. So, first we differentiate both the functions with respect to \[\theta \] and then we find the value of \[\dfrac{du}{dv}\] by using, \[\dfrac{du}{dv}=\dfrac{\left( \dfrac{du}{d\theta } \right)}{\left( \dfrac{dv}{d\theta } \right)}\]. Also we have to substitute \[\theta =\dfrac{\pi }{4}\] to obtain the final result.
Complete step-by-step solution:
Now, we have to find \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\].
Let us consider,
\[\Rightarrow u=\log \left( \sec \theta +\tan \theta \right)\]
Now, we differentiate \[u\] with respect to \[\theta \],
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{d}{d\theta }\left( \log \left( \sec \theta +\tan \theta \right) \right)\]
As we know that, \[\dfrac{d}{dx}\log x=\dfrac{1}{x}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\dfrac{d}{d\theta }\left( \sec \theta +\tan \theta \right)\]
Also we know that, \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x,\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\left( \sec \theta \tan \theta +{{\sec }^{2}}\theta \right)\]
\[\begin{align}
& \Rightarrow \dfrac{du}{d\theta }=\dfrac{\sec \theta }{\left( \sec \theta +\tan \theta \right)}\left( \tan \theta +\sec \theta \right) \\
& \Rightarrow \dfrac{du}{d\theta }=\sec \theta \\
\end{align}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\cos \theta }\]
Now, let us consider,
\[\Rightarrow v={{e}^{\left( \cos \theta -\sin \theta \right)}}\]
By differentiating with respect to \[\theta \], we get,
\[\Rightarrow \dfrac{dv}{d\theta }=\dfrac{d}{d\theta }\left( {{e}^{\left( \cos \theta -\sin \theta \right)}} \right)\]
As we know that, \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}},\dfrac{d}{dx}\cos x=-\sin x,\dfrac{d}{dx}\sin x=\cos x\]
\[\begin{align}
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\dfrac{d}{d\theta }\left( \cos \theta -\sin \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\left( -\sin \theta -\cos \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }=-{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \\
\end{align}\]
Now, we have to find the value of \[\dfrac{du}{dv}\], for that let us consider,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{du}{d\theta} \right)}{\left( \dfrac{dv}{d\theta } \right)}\]
By substituting the values of \[\dfrac{du}{d\theta }\] and \[\dfrac{dv}{d\theta }\] in above equation we can write,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{1}{\cos \theta } \right)}{\left( -{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \right)}\]
Now substitute \[\theta =\dfrac{\pi }{4}\], hence we get,
\[\Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\cos \dfrac{\pi }{4}} \right)}{\left( -{{e}^{\left( \cos \dfrac{\pi }{4}-\sin \dfrac{\pi }{4} \right)}}\left( \sin \dfrac{\pi }{4}+\cos \dfrac{\pi }{4} \right) \right)}\]
As we have the values of \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] we can write,
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\dfrac{1}{\sqrt{2}}} \right)}{\left( -{{e}^{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}} \right)}}\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \right) \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -{{e}^{0}}\left( \dfrac{2}{\sqrt{2}} \right) \right)} \\
\end{align}\]
We know that, \[{{e}^{0}}=1\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -\sqrt{2} \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=-1 \\
\end{align}\]
Hence, the value of \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\] is \[-1\].
Note: In this type of question students have to note that they have to first differentiate both the given functions first with respect to \[\theta \] and then can find the value of \[\dfrac{du}{dv}\]. Students have to remember the formulas of derivatives for the trigonometric functions as well as for exponential and logarithmic functions. Also students have to remember the values of trigonometric ratios for the angle \[\theta =\dfrac{\pi }{4}\]. Students have to take care during simplification after substituting the value of \[\theta =\dfrac{\pi }{4}\].
Complete step-by-step solution:
Now, we have to find \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\].
Let us consider,
\[\Rightarrow u=\log \left( \sec \theta +\tan \theta \right)\]
Now, we differentiate \[u\] with respect to \[\theta \],
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{d}{d\theta }\left( \log \left( \sec \theta +\tan \theta \right) \right)\]
As we know that, \[\dfrac{d}{dx}\log x=\dfrac{1}{x}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\dfrac{d}{d\theta }\left( \sec \theta +\tan \theta \right)\]
Also we know that, \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x,\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\left( \sec \theta \tan \theta +{{\sec }^{2}}\theta \right)\]
\[\begin{align}
& \Rightarrow \dfrac{du}{d\theta }=\dfrac{\sec \theta }{\left( \sec \theta +\tan \theta \right)}\left( \tan \theta +\sec \theta \right) \\
& \Rightarrow \dfrac{du}{d\theta }=\sec \theta \\
\end{align}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\cos \theta }\]
Now, let us consider,
\[\Rightarrow v={{e}^{\left( \cos \theta -\sin \theta \right)}}\]
By differentiating with respect to \[\theta \], we get,
\[\Rightarrow \dfrac{dv}{d\theta }=\dfrac{d}{d\theta }\left( {{e}^{\left( \cos \theta -\sin \theta \right)}} \right)\]
As we know that, \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}},\dfrac{d}{dx}\cos x=-\sin x,\dfrac{d}{dx}\sin x=\cos x\]
\[\begin{align}
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\dfrac{d}{d\theta }\left( \cos \theta -\sin \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\left( -\sin \theta -\cos \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }=-{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \\
\end{align}\]
Now, we have to find the value of \[\dfrac{du}{dv}\], for that let us consider,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{du}{d\theta} \right)}{\left( \dfrac{dv}{d\theta } \right)}\]
By substituting the values of \[\dfrac{du}{d\theta }\] and \[\dfrac{dv}{d\theta }\] in above equation we can write,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{1}{\cos \theta } \right)}{\left( -{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \right)}\]
Now substitute \[\theta =\dfrac{\pi }{4}\], hence we get,
\[\Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\cos \dfrac{\pi }{4}} \right)}{\left( -{{e}^{\left( \cos \dfrac{\pi }{4}-\sin \dfrac{\pi }{4} \right)}}\left( \sin \dfrac{\pi }{4}+\cos \dfrac{\pi }{4} \right) \right)}\]
As we have the values of \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] we can write,
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\dfrac{1}{\sqrt{2}}} \right)}{\left( -{{e}^{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}} \right)}}\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \right) \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -{{e}^{0}}\left( \dfrac{2}{\sqrt{2}} \right) \right)} \\
\end{align}\]
We know that, \[{{e}^{0}}=1\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -\sqrt{2} \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=-1 \\
\end{align}\]
Hence, the value of \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\] is \[-1\].
Note: In this type of question students have to note that they have to first differentiate both the given functions first with respect to \[\theta \] and then can find the value of \[\dfrac{du}{dv}\]. Students have to remember the formulas of derivatives for the trigonometric functions as well as for exponential and logarithmic functions. Also students have to remember the values of trigonometric ratios for the angle \[\theta =\dfrac{\pi }{4}\]. Students have to take care during simplification after substituting the value of \[\theta =\dfrac{\pi }{4}\].
Recently Updated Pages
How many sigma and pi bonds are present in HCequiv class 11 chemistry CBSE
Mark and label the given geoinformation on the outline class 11 social science CBSE
When people say No pun intended what does that mea class 8 english CBSE
Name the states which share their boundary with Indias class 9 social science CBSE
Give an account of the Northern Plains of India class 9 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Trending doubts
Difference Between Plant Cell and Animal Cell
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
Which are the Top 10 Largest Countries of the World?
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths