Find \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\]
Answer
279.9k+ views
Hint: In this type of question we have to use the concept of derivatives. Here, we have given two functions \[u\] and \[v\], where both are functions of \[\theta \]. So, first we differentiate both the functions with respect to \[\theta \] and then we find the value of \[\dfrac{du}{dv}\] by using, \[\dfrac{du}{dv}=\dfrac{\left( \dfrac{du}{d\theta } \right)}{\left( \dfrac{dv}{d\theta } \right)}\]. Also we have to substitute \[\theta =\dfrac{\pi }{4}\] to obtain the final result.
Complete step-by-step solution:
Now, we have to find \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\].
Let us consider,
\[\Rightarrow u=\log \left( \sec \theta +\tan \theta \right)\]
Now, we differentiate \[u\] with respect to \[\theta \],
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{d}{d\theta }\left( \log \left( \sec \theta +\tan \theta \right) \right)\]
As we know that, \[\dfrac{d}{dx}\log x=\dfrac{1}{x}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\dfrac{d}{d\theta }\left( \sec \theta +\tan \theta \right)\]
Also we know that, \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x,\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\left( \sec \theta \tan \theta +{{\sec }^{2}}\theta \right)\]
\[\begin{align}
& \Rightarrow \dfrac{du}{d\theta }=\dfrac{\sec \theta }{\left( \sec \theta +\tan \theta \right)}\left( \tan \theta +\sec \theta \right) \\
& \Rightarrow \dfrac{du}{d\theta }=\sec \theta \\
\end{align}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\cos \theta }\]
Now, let us consider,
\[\Rightarrow v={{e}^{\left( \cos \theta -\sin \theta \right)}}\]
By differentiating with respect to \[\theta \], we get,
\[\Rightarrow \dfrac{dv}{d\theta }=\dfrac{d}{d\theta }\left( {{e}^{\left( \cos \theta -\sin \theta \right)}} \right)\]
As we know that, \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}},\dfrac{d}{dx}\cos x=-\sin x,\dfrac{d}{dx}\sin x=\cos x\]
\[\begin{align}
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\dfrac{d}{d\theta }\left( \cos \theta -\sin \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\left( -\sin \theta -\cos \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }=-{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \\
\end{align}\]
Now, we have to find the value of \[\dfrac{du}{dv}\], for that let us consider,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{du}{d\theta} \right)}{\left( \dfrac{dv}{d\theta } \right)}\]
By substituting the values of \[\dfrac{du}{d\theta }\] and \[\dfrac{dv}{d\theta }\] in above equation we can write,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{1}{\cos \theta } \right)}{\left( -{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \right)}\]
Now substitute \[\theta =\dfrac{\pi }{4}\], hence we get,
\[\Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\cos \dfrac{\pi }{4}} \right)}{\left( -{{e}^{\left( \cos \dfrac{\pi }{4}-\sin \dfrac{\pi }{4} \right)}}\left( \sin \dfrac{\pi }{4}+\cos \dfrac{\pi }{4} \right) \right)}\]
As we have the values of \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] we can write,
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\dfrac{1}{\sqrt{2}}} \right)}{\left( -{{e}^{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}} \right)}}\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \right) \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -{{e}^{0}}\left( \dfrac{2}{\sqrt{2}} \right) \right)} \\
\end{align}\]
We know that, \[{{e}^{0}}=1\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -\sqrt{2} \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=-1 \\
\end{align}\]
Hence, the value of \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\] is \[-1\].
Note: In this type of question students have to note that they have to first differentiate both the given functions first with respect to \[\theta \] and then can find the value of \[\dfrac{du}{dv}\]. Students have to remember the formulas of derivatives for the trigonometric functions as well as for exponential and logarithmic functions. Also students have to remember the values of trigonometric ratios for the angle \[\theta =\dfrac{\pi }{4}\]. Students have to take care during simplification after substituting the value of \[\theta =\dfrac{\pi }{4}\].
Complete step-by-step solution:
Now, we have to find \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\].
Let us consider,
\[\Rightarrow u=\log \left( \sec \theta +\tan \theta \right)\]
Now, we differentiate \[u\] with respect to \[\theta \],
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{d}{d\theta }\left( \log \left( \sec \theta +\tan \theta \right) \right)\]
As we know that, \[\dfrac{d}{dx}\log x=\dfrac{1}{x}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\dfrac{d}{d\theta }\left( \sec \theta +\tan \theta \right)\]
Also we know that, \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x,\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\left( \sec \theta \tan \theta +{{\sec }^{2}}\theta \right)\]
\[\begin{align}
& \Rightarrow \dfrac{du}{d\theta }=\dfrac{\sec \theta }{\left( \sec \theta +\tan \theta \right)}\left( \tan \theta +\sec \theta \right) \\
& \Rightarrow \dfrac{du}{d\theta }=\sec \theta \\
\end{align}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\cos \theta }\]
Now, let us consider,
\[\Rightarrow v={{e}^{\left( \cos \theta -\sin \theta \right)}}\]
By differentiating with respect to \[\theta \], we get,
\[\Rightarrow \dfrac{dv}{d\theta }=\dfrac{d}{d\theta }\left( {{e}^{\left( \cos \theta -\sin \theta \right)}} \right)\]
As we know that, \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}},\dfrac{d}{dx}\cos x=-\sin x,\dfrac{d}{dx}\sin x=\cos x\]
\[\begin{align}
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\dfrac{d}{d\theta }\left( \cos \theta -\sin \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\left( -\sin \theta -\cos \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }=-{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \\
\end{align}\]
Now, we have to find the value of \[\dfrac{du}{dv}\], for that let us consider,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{du}{d\theta} \right)}{\left( \dfrac{dv}{d\theta } \right)}\]
By substituting the values of \[\dfrac{du}{d\theta }\] and \[\dfrac{dv}{d\theta }\] in above equation we can write,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{1}{\cos \theta } \right)}{\left( -{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \right)}\]
Now substitute \[\theta =\dfrac{\pi }{4}\], hence we get,
\[\Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\cos \dfrac{\pi }{4}} \right)}{\left( -{{e}^{\left( \cos \dfrac{\pi }{4}-\sin \dfrac{\pi }{4} \right)}}\left( \sin \dfrac{\pi }{4}+\cos \dfrac{\pi }{4} \right) \right)}\]
As we have the values of \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] we can write,
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\dfrac{1}{\sqrt{2}}} \right)}{\left( -{{e}^{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}} \right)}}\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \right) \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -{{e}^{0}}\left( \dfrac{2}{\sqrt{2}} \right) \right)} \\
\end{align}\]
We know that, \[{{e}^{0}}=1\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -\sqrt{2} \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=-1 \\
\end{align}\]
Hence, the value of \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\] is \[-1\].
Note: In this type of question students have to note that they have to first differentiate both the given functions first with respect to \[\theta \] and then can find the value of \[\dfrac{du}{dv}\]. Students have to remember the formulas of derivatives for the trigonometric functions as well as for exponential and logarithmic functions. Also students have to remember the values of trigonometric ratios for the angle \[\theta =\dfrac{\pi }{4}\]. Students have to take care during simplification after substituting the value of \[\theta =\dfrac{\pi }{4}\].
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Which one of the following places is unlikely to be class 8 physics CBSE

Select the word that is correctly spelled a Twelveth class 10 english CBSE

Difference Between Plant Cell and Animal Cell

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE

Change the following sentences into negative and interrogative class 10 english CBSE

Elucidate the structure of fructose class 12 chemistry CBSE

What is pollution? How many types of pollution? Define it
