
Find \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\]
Answer
503.1k+ views
Hint: In this type of question we have to use the concept of derivatives. Here, we have given two functions \[u\] and \[v\], where both are functions of \[\theta \]. So, first we differentiate both the functions with respect to \[\theta \] and then we find the value of \[\dfrac{du}{dv}\] by using, \[\dfrac{du}{dv}=\dfrac{\left( \dfrac{du}{d\theta } \right)}{\left( \dfrac{dv}{d\theta } \right)}\]. Also we have to substitute \[\theta =\dfrac{\pi }{4}\] to obtain the final result.
Complete step-by-step solution:
Now, we have to find \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\].
Let us consider,
\[\Rightarrow u=\log \left( \sec \theta +\tan \theta \right)\]
Now, we differentiate \[u\] with respect to \[\theta \],
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{d}{d\theta }\left( \log \left( \sec \theta +\tan \theta \right) \right)\]
As we know that, \[\dfrac{d}{dx}\log x=\dfrac{1}{x}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\dfrac{d}{d\theta }\left( \sec \theta +\tan \theta \right)\]
Also we know that, \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x,\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\left( \sec \theta \tan \theta +{{\sec }^{2}}\theta \right)\]
\[\begin{align}
& \Rightarrow \dfrac{du}{d\theta }=\dfrac{\sec \theta }{\left( \sec \theta +\tan \theta \right)}\left( \tan \theta +\sec \theta \right) \\
& \Rightarrow \dfrac{du}{d\theta }=\sec \theta \\
\end{align}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\cos \theta }\]
Now, let us consider,
\[\Rightarrow v={{e}^{\left( \cos \theta -\sin \theta \right)}}\]
By differentiating with respect to \[\theta \], we get,
\[\Rightarrow \dfrac{dv}{d\theta }=\dfrac{d}{d\theta }\left( {{e}^{\left( \cos \theta -\sin \theta \right)}} \right)\]
As we know that, \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}},\dfrac{d}{dx}\cos x=-\sin x,\dfrac{d}{dx}\sin x=\cos x\]
\[\begin{align}
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\dfrac{d}{d\theta }\left( \cos \theta -\sin \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\left( -\sin \theta -\cos \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }=-{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \\
\end{align}\]
Now, we have to find the value of \[\dfrac{du}{dv}\], for that let us consider,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{du}{d\theta} \right)}{\left( \dfrac{dv}{d\theta } \right)}\]
By substituting the values of \[\dfrac{du}{d\theta }\] and \[\dfrac{dv}{d\theta }\] in above equation we can write,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{1}{\cos \theta } \right)}{\left( -{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \right)}\]
Now substitute \[\theta =\dfrac{\pi }{4}\], hence we get,
\[\Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\cos \dfrac{\pi }{4}} \right)}{\left( -{{e}^{\left( \cos \dfrac{\pi }{4}-\sin \dfrac{\pi }{4} \right)}}\left( \sin \dfrac{\pi }{4}+\cos \dfrac{\pi }{4} \right) \right)}\]
As we have the values of \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] we can write,
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\dfrac{1}{\sqrt{2}}} \right)}{\left( -{{e}^{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}} \right)}}\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \right) \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -{{e}^{0}}\left( \dfrac{2}{\sqrt{2}} \right) \right)} \\
\end{align}\]
We know that, \[{{e}^{0}}=1\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -\sqrt{2} \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=-1 \\
\end{align}\]
Hence, the value of \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\] is \[-1\].
Note: In this type of question students have to note that they have to first differentiate both the given functions first with respect to \[\theta \] and then can find the value of \[\dfrac{du}{dv}\]. Students have to remember the formulas of derivatives for the trigonometric functions as well as for exponential and logarithmic functions. Also students have to remember the values of trigonometric ratios for the angle \[\theta =\dfrac{\pi }{4}\]. Students have to take care during simplification after substituting the value of \[\theta =\dfrac{\pi }{4}\].
Complete step-by-step solution:
Now, we have to find \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\].
Let us consider,
\[\Rightarrow u=\log \left( \sec \theta +\tan \theta \right)\]
Now, we differentiate \[u\] with respect to \[\theta \],
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{d}{d\theta }\left( \log \left( \sec \theta +\tan \theta \right) \right)\]
As we know that, \[\dfrac{d}{dx}\log x=\dfrac{1}{x}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\dfrac{d}{d\theta }\left( \sec \theta +\tan \theta \right)\]
Also we know that, \[\dfrac{d}{dx}\left( \sec x \right)=\sec x\tan x,\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\left( \sec \theta +\tan \theta \right)}\left( \sec \theta \tan \theta +{{\sec }^{2}}\theta \right)\]
\[\begin{align}
& \Rightarrow \dfrac{du}{d\theta }=\dfrac{\sec \theta }{\left( \sec \theta +\tan \theta \right)}\left( \tan \theta +\sec \theta \right) \\
& \Rightarrow \dfrac{du}{d\theta }=\sec \theta \\
\end{align}\]
\[\Rightarrow \dfrac{du}{d\theta }=\dfrac{1}{\cos \theta }\]
Now, let us consider,
\[\Rightarrow v={{e}^{\left( \cos \theta -\sin \theta \right)}}\]
By differentiating with respect to \[\theta \], we get,
\[\Rightarrow \dfrac{dv}{d\theta }=\dfrac{d}{d\theta }\left( {{e}^{\left( \cos \theta -\sin \theta \right)}} \right)\]
As we know that, \[\dfrac{d}{dx}{{e}^{x}}={{e}^{x}},\dfrac{d}{dx}\cos x=-\sin x,\dfrac{d}{dx}\sin x=\cos x\]
\[\begin{align}
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\dfrac{d}{d\theta }\left( \cos \theta -\sin \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }={{e}^{\left( \cos \theta -\sin \theta \right)}}\left( -\sin \theta -\cos \theta \right) \\
& \Rightarrow \dfrac{dv}{d\theta }=-{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \\
\end{align}\]
Now, we have to find the value of \[\dfrac{du}{dv}\], for that let us consider,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{du}{d\theta} \right)}{\left( \dfrac{dv}{d\theta } \right)}\]
By substituting the values of \[\dfrac{du}{d\theta }\] and \[\dfrac{dv}{d\theta }\] in above equation we can write,
\[\Rightarrow \dfrac{du}{dv}=\dfrac{\left( \dfrac{1}{\cos \theta } \right)}{\left( -{{e}^{\left( \cos \theta -\sin \theta \right)}}\left( \sin \theta +\cos \theta \right) \right)}\]
Now substitute \[\theta =\dfrac{\pi }{4}\], hence we get,
\[\Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\cos \dfrac{\pi }{4}} \right)}{\left( -{{e}^{\left( \cos \dfrac{\pi }{4}-\sin \dfrac{\pi }{4} \right)}}\left( \sin \dfrac{\pi }{4}+\cos \dfrac{\pi }{4} \right) \right)}\]
As we have the values of \[\cos \dfrac{\pi }{4}=\sin \dfrac{\pi }{4}=\dfrac{1}{\sqrt{2}}\] we can write,
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \dfrac{1}{\dfrac{1}{\sqrt{2}}} \right)}{\left( -{{e}^{\left( \dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{2}} \right)}}\left( \dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}} \right) \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -{{e}^{0}}\left( \dfrac{2}{\sqrt{2}} \right) \right)} \\
\end{align}\]
We know that, \[{{e}^{0}}=1\]
\[\begin{align}
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=\dfrac{\left( \sqrt{2} \right)}{\left( -\sqrt{2} \right)} \\
& \Rightarrow {{\left( \dfrac{du}{dv} \right)}_{\left( \theta =\dfrac{\pi }{4} \right)}}=-1 \\
\end{align}\]
Hence, the value of \[\dfrac{du}{dv}\] at \[\theta =\dfrac{\pi }{4}\] when \[u=\log \left( \sec \theta +\tan \theta \right);v={{e}^{\left( \cos \theta -\sin \theta \right)}}\] is \[-1\].
Note: In this type of question students have to note that they have to first differentiate both the given functions first with respect to \[\theta \] and then can find the value of \[\dfrac{du}{dv}\]. Students have to remember the formulas of derivatives for the trigonometric functions as well as for exponential and logarithmic functions. Also students have to remember the values of trigonometric ratios for the angle \[\theta =\dfrac{\pi }{4}\]. Students have to take care during simplification after substituting the value of \[\theta =\dfrac{\pi }{4}\].
Recently Updated Pages
A man running at a speed 5 ms is viewed in the side class 12 physics CBSE

The number of solutions in x in 02pi for which sqrt class 12 maths CBSE

State and explain Hardy Weinbergs Principle class 12 biology CBSE

Write any two methods of preparation of phenol Give class 12 chemistry CBSE

Which of the following statements is wrong a Amnion class 12 biology CBSE

Differentiate between action potential and resting class 12 biology CBSE

Trending doubts
What are the major means of transport Explain each class 12 social science CBSE

Which are the Top 10 Largest Countries of the World?

Draw a labelled sketch of the human eye class 12 physics CBSE

How much time does it take to bleed after eating p class 12 biology CBSE

Explain sex determination in humans with line diag class 12 biology CBSE

Explain sex determination in humans with the help of class 12 biology CBSE

