$
{\text{Find }}{A^2}{\text{ if }}A = \left[ {\begin{array}{*{20}{c}}
1&2&5 \\
3&4&1 \\
1&{ - 1}&2
\end{array}} \right]
$
Answer
Verified
510.9k+ views
\[
\Rightarrow {\text{Let }}A = \left[ {\begin{array}{*{20}{c}}
1&2&5 \\
3&4&1 \\
1&{ - 1}&2
\end{array}} \right]{\text{ (1)}} \\
{\text{So, now we have to find the value of }}{A^2}.{\text{ So,}} \\
\Rightarrow {A^2} = A*A{\text{ (2)}} \\
{\text{Putting value of }}A{\text{ in the RHS}}{\text{ of equation 2 we get,}} \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
1&2&5 \\
3&4&1 \\
1&{ - 1}&2
\end{array}} \right]*\left[ {\begin{array}{*{20}{c}}
1&2&5 \\
3&4&1 \\
1&{ - 1}&2
\end{array}} \right] \\
{\text{As, we know that for a matrix }}X{\text{ if we have to find }}{X^2}{\text{ then we find it as given below}} \\
\Rightarrow {\text{Let }}X = \left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]{\text{ }} \\
{\text{So, }}{X^2} = X*X,{\text{ is calculated as,}} \\
\Rightarrow {X^2} = \left[ {\begin{array}{*{20}{c}}
{(a*a) + (b*d) + (c*g)}&{(a*b) + (b*e) + (c*h)}&{(a*c) + (b*f) + (c*i)} \\
{(d*a) + (e*d) + (f*g)}&{(d*b) + (e*e) + (f*h)}&{(d*c) + (e*f) + (f*i)} \\
{(g*a) + (h*d) + (i*g)}&{(g*b) + (h*e) + (i*h)}&{(g*c) + (h*f) + (i*i)}
\end{array}} \right] \\
{\text{So, like }}{X^2}{\text{ we can also find the value of }}{A^2}. \\
{\text{So, for calculating the value of }}{A^2}. \\
\Rightarrow {{\text{A}}^2} = \left[ {\begin{array}{*{20}{c}}
{(1*1) + (2*3) + (5*1)}&{(1*2) + (2*4) + (5*( - 1))}&{(1*5) + (2*1) + (5*2)} \\
{(3*1) + (4*3) + (1*1)}&{(3*2) + (4*4) + (1*( - 1))}&{(3*5) + (4*1) + (1*2)} \\
{(1*1) + ( - 1*3) + (2*1)}&{(1*2) + ( - 1*4) + (2*( - 1))}&{(1*5) + (( - 1)*1) + (2*2)}
\end{array}} \right]{\text{ So,}} \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 + 6 + 5}&{2 + 8 - 5}&{5 + 2 + 10} \\
{3 + 12 + 1}&{6 + 16 - 1}&{15 + 4 + 2} \\
{1 - 3 + 2}&{2 - 4 - 2}&{5 - 1 + 4}
\end{array}} \right]{\text{ So on solving this it becomes}} \\
{\text{Hence , }}{A^2} = \left[ {\begin{array}{*{20}{c}}
{12}&5&{17} \\
{16}&{21}&{21} \\
0&{ - 4}&8
\end{array}} \right] \\
{\text{NOTE: - Whenever you came up with this type of problem then make calculations proper}} \\
{\text{As, in this type of problem there are many chances of getting calculation mistakes}}{\text{.}} \\
\\
\]
\Rightarrow {\text{Let }}A = \left[ {\begin{array}{*{20}{c}}
1&2&5 \\
3&4&1 \\
1&{ - 1}&2
\end{array}} \right]{\text{ (1)}} \\
{\text{So, now we have to find the value of }}{A^2}.{\text{ So,}} \\
\Rightarrow {A^2} = A*A{\text{ (2)}} \\
{\text{Putting value of }}A{\text{ in the RHS}}{\text{ of equation 2 we get,}} \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
1&2&5 \\
3&4&1 \\
1&{ - 1}&2
\end{array}} \right]*\left[ {\begin{array}{*{20}{c}}
1&2&5 \\
3&4&1 \\
1&{ - 1}&2
\end{array}} \right] \\
{\text{As, we know that for a matrix }}X{\text{ if we have to find }}{X^2}{\text{ then we find it as given below}} \\
\Rightarrow {\text{Let }}X = \left[ {\begin{array}{*{20}{c}}
a&b&c \\
d&e&f \\
g&h&i
\end{array}} \right]{\text{ }} \\
{\text{So, }}{X^2} = X*X,{\text{ is calculated as,}} \\
\Rightarrow {X^2} = \left[ {\begin{array}{*{20}{c}}
{(a*a) + (b*d) + (c*g)}&{(a*b) + (b*e) + (c*h)}&{(a*c) + (b*f) + (c*i)} \\
{(d*a) + (e*d) + (f*g)}&{(d*b) + (e*e) + (f*h)}&{(d*c) + (e*f) + (f*i)} \\
{(g*a) + (h*d) + (i*g)}&{(g*b) + (h*e) + (i*h)}&{(g*c) + (h*f) + (i*i)}
\end{array}} \right] \\
{\text{So, like }}{X^2}{\text{ we can also find the value of }}{A^2}. \\
{\text{So, for calculating the value of }}{A^2}. \\
\Rightarrow {{\text{A}}^2} = \left[ {\begin{array}{*{20}{c}}
{(1*1) + (2*3) + (5*1)}&{(1*2) + (2*4) + (5*( - 1))}&{(1*5) + (2*1) + (5*2)} \\
{(3*1) + (4*3) + (1*1)}&{(3*2) + (4*4) + (1*( - 1))}&{(3*5) + (4*1) + (1*2)} \\
{(1*1) + ( - 1*3) + (2*1)}&{(1*2) + ( - 1*4) + (2*( - 1))}&{(1*5) + (( - 1)*1) + (2*2)}
\end{array}} \right]{\text{ So,}} \\
\Rightarrow {A^2} = \left[ {\begin{array}{*{20}{c}}
{1 + 6 + 5}&{2 + 8 - 5}&{5 + 2 + 10} \\
{3 + 12 + 1}&{6 + 16 - 1}&{15 + 4 + 2} \\
{1 - 3 + 2}&{2 - 4 - 2}&{5 - 1 + 4}
\end{array}} \right]{\text{ So on solving this it becomes}} \\
{\text{Hence , }}{A^2} = \left[ {\begin{array}{*{20}{c}}
{12}&5&{17} \\
{16}&{21}&{21} \\
0&{ - 4}&8
\end{array}} \right] \\
{\text{NOTE: - Whenever you came up with this type of problem then make calculations proper}} \\
{\text{As, in this type of problem there are many chances of getting calculation mistakes}}{\text{.}} \\
\\
\]
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success
Master Class 12 English: Engaging Questions & Answers for Success
Master Class 12 Economics: Engaging Questions & Answers for Success
Master Class 12 Chemistry: Engaging Questions & Answers for Success
Master Class 12 Social Science: Engaging Questions & Answers for Success
Class 12 Question and Answer - Your Ultimate Solutions Guide
Trending doubts
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
What are the major means of transport Explain each class 12 social science CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Explain sex determination in humans with the help of class 12 biology CBSE
How much time does it take to bleed after eating p class 12 biology CBSE