Answer
Verified
493.8k+ views
Hint: In this question first we will multiply the given two functions then apply power rule of Integration which says that integration of\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\] where $n \ne - 1$. As if $n = - 1$then ${x^{ - 1}} = \dfrac{1}{x}$ and Integration of $\int {\dfrac{1}{x}dx = \ln x + c} $, where c is the integration constant.
Complete step-by-step answer:
In the given question the integral is an indefinite type of integration as there are no upper and lower limits. To solve this question first of all, expand the given expression by multiplying $\sqrt x $.
\[ \Rightarrow \left( {1 + x} \right)\sqrt x = \left( {\sqrt x + {x^1} \times {x^{\dfrac{1}{2}}}} \right)\]
The above expression can be simplified more such that
\[
\Rightarrow \left( {1 + x} \right)\sqrt x = \left( {\sqrt x + {x^{\dfrac{1}{2} + 1}}} \right) \\
\Rightarrow \left( {1 + x} \right)\sqrt x = \left( {\sqrt x + {x^{\dfrac{3}{2}}}} \right) \\
\]
Now the Integration can be done easily
$ \Rightarrow \int {\left( {\sqrt x + {x^{\dfrac{3}{2}}}} \right)dx} $
Integrating each term separately as integral of a sum is the sum of the integrals.
$ \Rightarrow \int {\sqrt x dx + \int {{x^{\dfrac{3}{2}}}} dx} $
Now using the Power rule of integration \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \],we get
\[ \Rightarrow \dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} + \dfrac{{{x^{\dfrac{5}{2}}}}}{{\dfrac{5}{2}}} + c\]
Further simplify the above expression
\[ \Rightarrow \dfrac{{2{x^{\dfrac{3}{2}}}}}{3} + \dfrac{{2{x^{\dfrac{5}{2}}}}}{5} + c\]
Note: Whenever this type of question appears always first write down the given expression which needs to be integrated. Afterwards try to simplify the expression by expanding as much as possible (as in our case we simplified \[\left( {1 + x} \right)\sqrt x \]).Use power rule of integration which says that integration of\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\], Where c is the integration constant need to be kept at the end of integration as differentiation of Constant is zero. Differentiation actually eats the constant values because of this differentiation and integration are not exactly inverse operation of each other. Do understand the basic rules of integration as it's going to help further solving the tough question with more tough expressions.
Complete step-by-step answer:
In the given question the integral is an indefinite type of integration as there are no upper and lower limits. To solve this question first of all, expand the given expression by multiplying $\sqrt x $.
\[ \Rightarrow \left( {1 + x} \right)\sqrt x = \left( {\sqrt x + {x^1} \times {x^{\dfrac{1}{2}}}} \right)\]
The above expression can be simplified more such that
\[
\Rightarrow \left( {1 + x} \right)\sqrt x = \left( {\sqrt x + {x^{\dfrac{1}{2} + 1}}} \right) \\
\Rightarrow \left( {1 + x} \right)\sqrt x = \left( {\sqrt x + {x^{\dfrac{3}{2}}}} \right) \\
\]
Now the Integration can be done easily
$ \Rightarrow \int {\left( {\sqrt x + {x^{\dfrac{3}{2}}}} \right)dx} $
Integrating each term separately as integral of a sum is the sum of the integrals.
$ \Rightarrow \int {\sqrt x dx + \int {{x^{\dfrac{3}{2}}}} dx} $
Now using the Power rule of integration \[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} \],we get
\[ \Rightarrow \dfrac{{{x^{\dfrac{3}{2}}}}}{{\dfrac{3}{2}}} + \dfrac{{{x^{\dfrac{5}{2}}}}}{{\dfrac{5}{2}}} + c\]
Further simplify the above expression
\[ \Rightarrow \dfrac{{2{x^{\dfrac{3}{2}}}}}{3} + \dfrac{{2{x^{\dfrac{5}{2}}}}}{5} + c\]
Note: Whenever this type of question appears always first write down the given expression which needs to be integrated. Afterwards try to simplify the expression by expanding as much as possible (as in our case we simplified \[\left( {1 + x} \right)\sqrt x \]).Use power rule of integration which says that integration of\[\int {{x^n}dx = \dfrac{{{x^{n + 1}}}}{{n + 1}}} + c\], Where c is the integration constant need to be kept at the end of integration as differentiation of Constant is zero. Differentiation actually eats the constant values because of this differentiation and integration are not exactly inverse operation of each other. Do understand the basic rules of integration as it's going to help further solving the tough question with more tough expressions.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
What organs are located on the left side of your body class 11 biology CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
How much time does it take to bleed after eating p class 12 biology CBSE