Evaluate the integral: $\int{\cos x\log \left( \tan \dfrac{x}{2} \right)dx}$
Answer
281.1k+ views
Hint: To integrate the given integration using integration by parts, we are going to use the following integration by parts formula which is equal to: $\int{f\left( x \right)g\left( x \right)dx}=f\left( x \right)\int{g\left( x \right)dx}-\int{f'\left( x \right)}\int{g\left( x \right)dx}$. The catch in this integration is what could be the first term and what could be the second term. And this priority of the function is decided by the mnemonics named “ILATE” and we will discuss each letter in the solution below.
Complete step-by-step solution:
The integration which we have to find is as follows:
$\int{\cos x\log \left( \tan \dfrac{x}{2} \right)dx}$
Now, we are going to integrate by using integration by parts. The formula for integration by parts is as follows:
$\int{f\left( x \right)g\left( x \right)dx}=f\left( x \right)\int{g\left( x \right)dx}-\int{f'\left( x \right)}\int{g\left( x \right)dx}$ …………… (1)
In the above formula, $f\left( x \right)\And g\left( x \right)$ are two functions but here, we should know which function will get the priority over another. To decide the priority there is mnemonic which is equal to:
ILATE
Now, in the above mnemonic, “I” represents inverse functions, “L” represents a logarithmic function, “A” represents algebraic functions, “T” represents trigonometric functions and “E” represents exponential functions. Now, the order of the letters in this word “ILATE” will be the order of priority for the functions.
So, using this mnemonic in the given integration, in the given integration, we have two functions, logarithmic and trigonometric functions, so logarithm will get priority over trigonometric functions. Now, $f\left( x \right)=\log \left( \tan \dfrac{x}{2} \right)\And g\left( x \right)=\cos x$ then substituting these values of f(x) and g(x) in eq. (1) we get,
$\int{\log \left( \tan \dfrac{x}{2} \right)\cos xdx}=\log \left( \tan \dfrac{x}{2} \right)\int{\cos dx}-\int{\left( \log \left( \tan \dfrac{x}{2} \right) \right)'}\int{\cos xdx}$ ……………. (2)
We know the integration of $\cos x$ with respect to x we get,
$\int{\cos xdx}=\sin x$
$\int{\log \left( \tan \dfrac{x}{2} \right)\cos xdx}=\log \left( \tan \dfrac{x}{2} \right)\left( \sin x \right)-\int{\left( \log \left( \tan \dfrac{x}{2} \right) \right)'}\left( \sin x \right)dx$…………(3)
Now, we are going to show the derivative of $\log \left( \tan \dfrac{x}{2} \right)$ with respect to x as follows:
$\dfrac{d\log \left( \tan \dfrac{x}{2} \right)}{dx}=\dfrac{1}{\tan \dfrac{x}{2}}\left( {{\sec }^{2}}\dfrac{x}{2} \right)\left( \dfrac{1}{2} \right)$
We know that $\tan \dfrac{x}{2}=\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}\And \sec \dfrac{x}{2}=\dfrac{1}{\cos \dfrac{x}{2}}$ so using the relation in the above we get,
$\begin{align}
& \dfrac{d\log \left( \tan \dfrac{x}{2} \right)}{dx}=\dfrac{1}{\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}}\left( \dfrac{1}{{{\cos }^{2}}\dfrac{x}{2}} \right)\left( \dfrac{1}{2} \right) \\
& \Rightarrow \dfrac{d\log \left( \tan \dfrac{x}{2} \right)}{dx}=\dfrac{1}{\dfrac{\sin \dfrac{x}{2}}{1}}\left( \dfrac{1}{\cos \dfrac{x}{2}} \right)\left( \dfrac{1}{2} \right) \\
& \Rightarrow \dfrac{d\log \left( \tan \dfrac{x}{2} \right)}{dx}=\dfrac{1}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
\end{align}$
We know the identity of sine of double angle as follows:
$\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
Using the above relation in the above equation we get,
$\Rightarrow \dfrac{d\log \left( \tan \dfrac{x}{2} \right)}{dx}=\dfrac{1}{\sin x}$
Using the above relation in (3) we get,
$\begin{align}
& \int{\log \left( \tan \dfrac{x}{2} \right)\cos xdx}=\log \left( \tan \dfrac{x}{2} \right)\left( \sin x \right)-\int{\left( \log \left( \tan \dfrac{x}{2} \right) \right)'}\left( \sin x \right)dx \\
& \Rightarrow \int{\log \left( \tan \dfrac{x}{2} \right)\cos xdx}=\log \left( \tan \dfrac{x}{2} \right)\left( \sin x \right)-\int{\left( \dfrac{1}{\sin x} \right)}\left( \sin x \right)dx \\
& \Rightarrow \int{\log \left( \tan \dfrac{x}{2} \right)\cos xdx}=\log \left( \tan \dfrac{x}{2} \right)\left( \sin x \right)-\int{dx} \\
& \Rightarrow \int{\log \left( \tan \dfrac{x}{2} \right)\cos xdx}=\log \left( \tan \dfrac{x}{2} \right)\left( \sin x \right)-x+C \\
\end{align}$
From the above solution, we have shown the integration of $\int{\cos x\log \left( \tan \dfrac{x}{2} \right)dx}$ which is equal to $\log \left( \tan \dfrac{x}{2} \right)\left( \sin x \right)-x+C$.
Note: The point of making a mistake is in the integration of $\sin x\And \cos x$ and the mistake is in putting the sign before the result of integration.
In the integration of $\cos x$ with respect to x we get a negative sign in the result whereas in the integration of $\sin x$ with respect to x we get a positive sign in the result.
$\begin{align}
& \int{\cos dx}=\sin x \\
& \int{\sin xdx}=-\cos x \\
\end{align}$
Complete step-by-step solution:
The integration which we have to find is as follows:
$\int{\cos x\log \left( \tan \dfrac{x}{2} \right)dx}$
Now, we are going to integrate by using integration by parts. The formula for integration by parts is as follows:
$\int{f\left( x \right)g\left( x \right)dx}=f\left( x \right)\int{g\left( x \right)dx}-\int{f'\left( x \right)}\int{g\left( x \right)dx}$ …………… (1)
In the above formula, $f\left( x \right)\And g\left( x \right)$ are two functions but here, we should know which function will get the priority over another. To decide the priority there is mnemonic which is equal to:
ILATE
Now, in the above mnemonic, “I” represents inverse functions, “L” represents a logarithmic function, “A” represents algebraic functions, “T” represents trigonometric functions and “E” represents exponential functions. Now, the order of the letters in this word “ILATE” will be the order of priority for the functions.
So, using this mnemonic in the given integration, in the given integration, we have two functions, logarithmic and trigonometric functions, so logarithm will get priority over trigonometric functions. Now, $f\left( x \right)=\log \left( \tan \dfrac{x}{2} \right)\And g\left( x \right)=\cos x$ then substituting these values of f(x) and g(x) in eq. (1) we get,
$\int{\log \left( \tan \dfrac{x}{2} \right)\cos xdx}=\log \left( \tan \dfrac{x}{2} \right)\int{\cos dx}-\int{\left( \log \left( \tan \dfrac{x}{2} \right) \right)'}\int{\cos xdx}$ ……………. (2)
We know the integration of $\cos x$ with respect to x we get,
$\int{\cos xdx}=\sin x$
$\int{\log \left( \tan \dfrac{x}{2} \right)\cos xdx}=\log \left( \tan \dfrac{x}{2} \right)\left( \sin x \right)-\int{\left( \log \left( \tan \dfrac{x}{2} \right) \right)'}\left( \sin x \right)dx$…………(3)
Now, we are going to show the derivative of $\log \left( \tan \dfrac{x}{2} \right)$ with respect to x as follows:
$\dfrac{d\log \left( \tan \dfrac{x}{2} \right)}{dx}=\dfrac{1}{\tan \dfrac{x}{2}}\left( {{\sec }^{2}}\dfrac{x}{2} \right)\left( \dfrac{1}{2} \right)$
We know that $\tan \dfrac{x}{2}=\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}\And \sec \dfrac{x}{2}=\dfrac{1}{\cos \dfrac{x}{2}}$ so using the relation in the above we get,
$\begin{align}
& \dfrac{d\log \left( \tan \dfrac{x}{2} \right)}{dx}=\dfrac{1}{\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}}\left( \dfrac{1}{{{\cos }^{2}}\dfrac{x}{2}} \right)\left( \dfrac{1}{2} \right) \\
& \Rightarrow \dfrac{d\log \left( \tan \dfrac{x}{2} \right)}{dx}=\dfrac{1}{\dfrac{\sin \dfrac{x}{2}}{1}}\left( \dfrac{1}{\cos \dfrac{x}{2}} \right)\left( \dfrac{1}{2} \right) \\
& \Rightarrow \dfrac{d\log \left( \tan \dfrac{x}{2} \right)}{dx}=\dfrac{1}{2\sin \dfrac{x}{2}\cos \dfrac{x}{2}} \\
\end{align}$
We know the identity of sine of double angle as follows:
$\sin x=2\sin \dfrac{x}{2}\cos \dfrac{x}{2}$
Using the above relation in the above equation we get,
$\Rightarrow \dfrac{d\log \left( \tan \dfrac{x}{2} \right)}{dx}=\dfrac{1}{\sin x}$
Using the above relation in (3) we get,
$\begin{align}
& \int{\log \left( \tan \dfrac{x}{2} \right)\cos xdx}=\log \left( \tan \dfrac{x}{2} \right)\left( \sin x \right)-\int{\left( \log \left( \tan \dfrac{x}{2} \right) \right)'}\left( \sin x \right)dx \\
& \Rightarrow \int{\log \left( \tan \dfrac{x}{2} \right)\cos xdx}=\log \left( \tan \dfrac{x}{2} \right)\left( \sin x \right)-\int{\left( \dfrac{1}{\sin x} \right)}\left( \sin x \right)dx \\
& \Rightarrow \int{\log \left( \tan \dfrac{x}{2} \right)\cos xdx}=\log \left( \tan \dfrac{x}{2} \right)\left( \sin x \right)-\int{dx} \\
& \Rightarrow \int{\log \left( \tan \dfrac{x}{2} \right)\cos xdx}=\log \left( \tan \dfrac{x}{2} \right)\left( \sin x \right)-x+C \\
\end{align}$
From the above solution, we have shown the integration of $\int{\cos x\log \left( \tan \dfrac{x}{2} \right)dx}$ which is equal to $\log \left( \tan \dfrac{x}{2} \right)\left( \sin x \right)-x+C$.
Note: The point of making a mistake is in the integration of $\sin x\And \cos x$ and the mistake is in putting the sign before the result of integration.
In the integration of $\cos x$ with respect to x we get a negative sign in the result whereas in the integration of $\sin x$ with respect to x we get a positive sign in the result.
$\begin{align}
& \int{\cos dx}=\sin x \\
& \int{\sin xdx}=-\cos x \\
\end{align}$
Recently Updated Pages
Basicity of sulphurous acid and sulphuric acid are

Why should electric field lines never cross each other class 12 physics CBSE

An electrostatic field line is a continuous curve That class 12 physics CBSE

What are the measures one has to take to prevent contracting class 12 biology CBSE

Suggest some methods to assist infertile couples to class 12 biology CBSE

Amniocentesis for sex determination is banned in our class 12 biology CBSE

Trending doubts
Which of the following Chief Justice of India has acted class 10 social science CBSE

Green glands are excretory organs of A Crustaceans class 11 biology CBSE

What if photosynthesis does not occur in plants class 11 biology CBSE

What is 1 divided by 0 class 8 maths CBSE

Fill the blanks with the suitable prepositions 1 The class 9 english CBSE

Difference Between Plant Cell and Animal Cell

10 slogans on organ donation class 8 english CBSE

Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE

What is the past tense of read class 10 english CBSE
