Answer
Verified
492.9k+ views
Hint: To solve this question substitute value of $1-{{\tan }^{2}}x=t$
We have the given integral as $I=\int{\tan x{{\sec }^{2}}x\sqrt{1-{{\tan }^{2}}x}dx}..........\left( 1 \right)$
Here, we can use substitute method for finding/solving the given integral in a proper way:
Let $t=1-{{\tan }^{2}}x$
Differentiating both sides with respect to $x$
$t=1-{{\tan }^{2}}x$
$\dfrac{dt}{dx}=-2\tan x{{\sec }^{2}}x$ $\left( \dfrac{d}{dx}\left( \tan x
\right)\ And -{{\sec }^{2}}x \right)$ chain rule is applied
$dt=-2\tan x{{\sec }^{2}}xdx.............\left( 2 \right)$
From the equation $\left( 1 \right)\And \left( 2 \right)$; we can replace $\tan x{{\sec }^{2}}xdx$ by
above equation $\left( 2 \right)$ as
$\tan x{{\sec }^{2}}xdx=\dfrac{-dt}{2}$
Hence, equation $\left( 1 \right)$ will become
$I=\int{\dfrac{-1}{2}\sqrt{t}dt}$ as $\left( 1-{{\tan }^{2}}x=t \right)$
\[\begin{align}
& I=\dfrac{-1}{2}\int{{{t}^{\dfrac{1}{2}}}}dt \\
& I=\dfrac{-1}{2}\dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}+C\text{
} as \int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}} \\
\end{align}\]
\[I=\dfrac{-1}{2}\dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}+C=\dfrac{-1}{2}\times
\dfrac{2}{3}{{t}^{\dfrac{3}{2}}}+C\]
\[\begin{align}
& I=\dfrac{-1}{3}{{t}^{\dfrac{3}{2}}}+C \\
& \text{As }t=1-{{\tan }^{2}}x \\
& I=\dfrac{-1}{3}{{\left( 1-{{\tan }^{2}}x \right)}^{\dfrac{3}{2}}}+C \\
\end{align}\]
Hence,
$\int{\tan x{{\sec }^{2}}x\sqrt{1-{{\tan }^{2}}x}}dx=\dfrac{-1}{3}{{\left( 1-{{\tan }^{2}}x
\right)}^{\dfrac{3}{2}}}+C$
Note: One can substitute
$t=\tan x$
Hence $dt={{\sec }^{2}}xdx$ and then can put value in integral.
Therefore $I=\int{t\sqrt{1-{{t}^{2}}}dt}$
Now, he/she needs to put ${{t}^{2}}=y\And 1-{{t}^{2}}=y$ to solve the above integral.
Hence, it takes one more step than the solution provided but the answer will be the same.
One can convert $\tan x\And {{\sec }^{2}}x$ to cosine and sine forms which students do
generally will take more time as well.
We have the given integral as $I=\int{\tan x{{\sec }^{2}}x\sqrt{1-{{\tan }^{2}}x}dx}..........\left( 1 \right)$
Here, we can use substitute method for finding/solving the given integral in a proper way:
Let $t=1-{{\tan }^{2}}x$
Differentiating both sides with respect to $x$
$t=1-{{\tan }^{2}}x$
$\dfrac{dt}{dx}=-2\tan x{{\sec }^{2}}x$ $\left( \dfrac{d}{dx}\left( \tan x
\right)\ And -{{\sec }^{2}}x \right)$ chain rule is applied
$dt=-2\tan x{{\sec }^{2}}xdx.............\left( 2 \right)$
From the equation $\left( 1 \right)\And \left( 2 \right)$; we can replace $\tan x{{\sec }^{2}}xdx$ by
above equation $\left( 2 \right)$ as
$\tan x{{\sec }^{2}}xdx=\dfrac{-dt}{2}$
Hence, equation $\left( 1 \right)$ will become
$I=\int{\dfrac{-1}{2}\sqrt{t}dt}$ as $\left( 1-{{\tan }^{2}}x=t \right)$
\[\begin{align}
& I=\dfrac{-1}{2}\int{{{t}^{\dfrac{1}{2}}}}dt \\
& I=\dfrac{-1}{2}\dfrac{{{t}^{\dfrac{1}{2}+1}}}{\dfrac{1}{2}+1}+C\text{
} as \int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}} \\
\end{align}\]
\[I=\dfrac{-1}{2}\dfrac{{{t}^{\dfrac{3}{2}}}}{\dfrac{3}{2}}+C=\dfrac{-1}{2}\times
\dfrac{2}{3}{{t}^{\dfrac{3}{2}}}+C\]
\[\begin{align}
& I=\dfrac{-1}{3}{{t}^{\dfrac{3}{2}}}+C \\
& \text{As }t=1-{{\tan }^{2}}x \\
& I=\dfrac{-1}{3}{{\left( 1-{{\tan }^{2}}x \right)}^{\dfrac{3}{2}}}+C \\
\end{align}\]
Hence,
$\int{\tan x{{\sec }^{2}}x\sqrt{1-{{\tan }^{2}}x}}dx=\dfrac{-1}{3}{{\left( 1-{{\tan }^{2}}x
\right)}^{\dfrac{3}{2}}}+C$
Note: One can substitute
$t=\tan x$
Hence $dt={{\sec }^{2}}xdx$ and then can put value in integral.
Therefore $I=\int{t\sqrt{1-{{t}^{2}}}dt}$
Now, he/she needs to put ${{t}^{2}}=y\And 1-{{t}^{2}}=y$ to solve the above integral.
Hence, it takes one more step than the solution provided but the answer will be the same.
One can convert $\tan x\And {{\sec }^{2}}x$ to cosine and sine forms which students do
generally will take more time as well.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE